Drug-induced second tumors: a disproportionality analysis of the FAERS database.

作者信息

Chen Shupeng, Zhang Yuzhe, Li Xiaojian, Tang Nana, Zeng Yingjian

机构信息

School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.

The First Laboratory of Cancer Institute, The First Hospital of China Medical University, 155 Nanjingbei Street, Heping District, Shenyang, Liaoning, China.

出版信息

Discov Oncol. 2025 May 16;16(1):786. doi: 10.1007/s12672-025-02502-6.

Abstract

BACKGROUND

Drug-induced second tumors (DIST) refer to new primary cancers that develop during or after the treatment of an initial cancer due to the long-term effects of medications. As a severe long-term adverse event, DIST has gained widespread attention globally in recent years. With the increasing prevalence of cancer treatments and the prolonged survival of patients, drug-induced second tumors have become more prominent and pose a significant public health challenge. However, most existing studies have focused on individual drugs or small patient cohorts, lacking large-scale, real-world data evaluations. Particularly, the potential second-tumor risk of new drugs remains underexplored.

OBJECTIVE

This study aims to systematically assess the adverse event signals between drugs and second tumors using the U.S. FDA Adverse Event Reporting System (FAERS) database, employing disproportionality analysis (DPA) methods. It particularly focuses on uncovering drugs that have not clearly labeled second-tumor risks.

METHODS

Data from the FDA Adverse Event Reporting System (FAERS), covering reports from its inception to the third quarter of 2024, was retrieved. After data standardization, four disproportionality methods were used: Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma Poisson Shrinker (MGPS). These methods assessed the correlation between azacitidine and adverse drug events (ADEs). Additionally, the Weibull Shape Parameter (WSP) was used to analyze the characteristic patterns of time-to-onset curves. Newly discovered signals were verified against FDA drug labels to confirm their novelty. The Weibull analysis was conducted to examine the temporal aspects of adverse event occurrences.

RESULTS

Since 2004, drug-induced tumor events have been increasing annually, with a total of 7597 drug-related tumor adverse events recorded. A total of 250 drugs were identified as having potential risk signals. High-incidence populations were primarily aged between 65 and 85 years, with a higher proportion of individuals with a body weight ≥ 90 kg. The most frequent occurrence was observed in patients with Chronic Myeloid Leukemia (13.36%). Among the top 5 drugs with the highest number of reported drug-induced second tumor adverse events, IMATINIB (906 reports), RUXOLITINIB (554 reports), PALBOCICLIB (552 reports), OCTREOTIDE (399 reports), and DOXORUBICIN (380 reports) were identified. Among these, PALBOCICLIB, OCTREOTIDE, and DOXORUBICIN are drugs for which the risk of drug-induced second tumors is not explicitly mentioned in their labels. A total of 76 drugs were identified through four disproportionality algorithms (ROR, PRR, MGPS, BCPNN), with a minimum time to drug-induced tumor occurrence of 5 years, exhibiting an early failure-type curve.

CONCLUSION

This study, based on large-scale real-world data, reveals the potential associations between drugs and second tumors, especially highlighting the risks of some new drugs. The findings provide valuable insights for drug safety monitoring and have significant public health implications. By uncovering previously unrecognized potential risks, this research lays the groundwork for further advancements in pharmacovigilance.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b762/12084198/10c6dc0fa99b/12672_2025_2502_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索