Suppr超能文献

整合影像组学特征与CT语义特征以预测临床I期周围型肺腺癌的脏层胸膜侵犯

Integrating radiomics features and CT semantic characteristics for predicting visceral pleural invasion in clinical stage Ia peripheral lung adenocarcinoma.

作者信息

Zhao Fengnian, Zhao Yunqing, Ye Zhaoxiang, Yan Qingna, Sun Haoran, Zhou Guiming

机构信息

Department of Ultrasound, Tianjin Medical University General Hospital, Anshan Road, Heping District, Tianjin, 300052, China.

出版信息

Discov Oncol. 2025 May 16;16(1):780. doi: 10.1007/s12672-025-02548-6.

Abstract

OBJECTIVES

The aim of this study was to non-invasively predict the visceral pleural invasion (VPI) of peripheral lung adenocarcinoma (LA) highly associated with pleura of clinical stage Ia based on preoperative chest computed tomography (CT) scanning.

METHODS

A total of 537 patients diagnosed with clinical stage Ia LA underwent resection and were stratified into training and validation cohorts at a ratio of 7:3. Radiomics features were extracted using PyRadiomics software following tumor lesion segmentation and were subsequently filtered through spearman correlation analysis, minimum redundancy maximum relevance, and least absolute shrinkage and selection operator regression analysis. Univariate and multivariable logistic regression analyses were conducted to identify independent predictors. A predictive model was established with visual nomogram and independent sample validation, and evaluated in terms of area under the receiver operating characteristic curve (AUC).

RESULTS

The independent predictors of VPI were identified: pleural attachment (p < 0.001), pleural contact angle (p = 0.019) and Rad-score (p < 0.001). The combined model showed good calibration with an AUC of 0.843 (95% confidence intervals (CI 0.796, 0.882), in contrast to 0.757 (95% CI 0.724, 0.785; DeLong's test P < 0.001) and 0.715 (95% CI 0.688, 0.746; DeLong's test P < 0.001) when only radiomics or CT semantic features were utilized separately. For validation group, the accuracy of combined prediction model was reasonable with an AUC of 0.792 (95% CI 0.765, 0.824).

CONCLUSION

Our predictive model, which integrated radiomics features of primary tumors and peritumoral CT semantic characteristics, offers a non-invasive method for evaluating VPI in patients with clinical stage Ia LA. Additionally, it provides prognostic information and supports surgeons in making more personalized treatment decisions.

摘要

目的

本研究旨在基于术前胸部计算机断层扫描(CT),对临床Ⅰa期周围型肺腺癌(LA)与胸膜高度相关的脏层胸膜侵犯(VPI)进行无创预测。

方法

共有537例诊断为临床Ⅰa期LA的患者接受了手术切除,并按7:3的比例分为训练组和验证组。在肿瘤病变分割后,使用PyRadiomics软件提取影像组学特征,随后通过斯皮尔曼相关性分析、最小冗余最大相关性分析以及最小绝对收缩和选择算子回归分析进行筛选。进行单因素和多因素逻辑回归分析以确定独立预测因子。通过可视化列线图和独立样本验证建立预测模型,并根据受试者工作特征曲线下面积(AUC)进行评估。

结果

确定了VPI的独立预测因子:胸膜附着(p<0.001)、胸膜接触角(p = 0.019)和Rad评分(p<0.001)。联合模型显示出良好的校准,AUC为0.843(95%置信区间(CI)0.796,0.882),而单独使用影像组学或CT语义特征时,AUC分别为0.757(95%CI 0.724,0.785;DeLong检验P<0.001)和0.715(95%CI 0.688,0.746;DeLong检验P<0.001)。对于验证组,联合预测模型具有合理的准确性,AUC为0.792(95%CI 0.765,0.824)。

结论

我们的预测模型整合了原发性肿瘤的影像组学特征和肿瘤周围CT语义特征,为评估临床Ⅰa期LA患者的VPI提供了一种无创方法。此外,它还提供了预后信息,并支持外科医生做出更个性化的治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc9/12084461/e7141a0ca442/12672_2025_2548_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验