文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用列线图模型联合放射组学和临床特征预测表现为部分实性密度的肺腺癌的内脏胸膜侵犯。

Predicting visceral pleural invasion in lung adenocarcinoma presenting as part-solid density utilizing a nomogram model combined with radiomics and clinical features.

机构信息

Department of Medical Imaging, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China.

Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

出版信息

Thorac Cancer. 2024 Jan;15(1):23-34. doi: 10.1111/1759-7714.15151. Epub 2023 Nov 28.


DOI:10.1111/1759-7714.15151
PMID:38018018
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10761615/
Abstract

BACKGROUND: To develop and validate a preoperative nomogram model combining the radiomics signature and clinical features for preoperative prediction of visceral pleural invasion (VPI) in lung nodules presenting as part-solid density. METHODS: We retrospectively reviewed 156 patients with pathologically confirmed invasive lung adenocarcinomas after surgery from January 2016 to August 2019. The patients were split into training and validation sets by a ratio of 7:3. The radiomic features were extracted with the aid of FeAture Explorer Pro (FAE). A CT-based radiomics model was constructed to predict the presence of VPI and internally validated. Multivariable regression analysis was conducted to construct a nomogram model, and the performance of the models were evaluated with the area under the receiver operating characteristic curve (AUC) and compared with each other. RESULTS: The enrolled patients were split into training (n = 109) and validation sets (n = 47). A total of 806 features were extracted and the selected 10 optimal features were used in the construction of the radiomics model among the 707 stable features. The AUC of the nomogram model was 0.888 (95% CI: 0.762-0.961), which was superior to the clinical model (0.787, 95% CI: 0.643-0.893; p = 0.049) and comparable to the radiomics model (0.879, 95% CI: 0.751-0.965; p > 0.05). The nomogram model achieved a sensitivity of 90.5% and a specificity of 76.9% in the validation dataset. CONCLUSIONS: The nomogram model could be considered as a noninvasive method to predict VPI with either highly sensitive or highly specific diagnoses depending on clinical needs.

摘要

背景:为了对表现为部分实性密度的肺结节中内脏胸膜侵犯(VPI)进行术前预测,开发并验证一种结合放射组学特征和临床特征的术前列线图模型。

方法:我们回顾性分析了 2016 年 1 月至 2019 年 8 月期间经手术病理证实的 156 例浸润性肺腺癌患者。患者按照 7:3 的比例分为训练集和验证集。借助于 FeAture Explorer Pro(FAE)提取放射组学特征。构建基于 CT 的放射组学模型来预测 VPI 的存在,并进行内部验证。进行多变量回归分析构建列线图模型,并通过接受者操作特征曲线下面积(AUC)评估模型性能,并相互比较。

结果:纳入的患者被分为训练集(n=109)和验证集(n=47)。共提取 806 个特征,在 707 个稳定特征中,选择了 10 个最优特征用于构建放射组学模型。列线图模型的 AUC 为 0.888(95%CI:0.762-0.961),优于临床模型(0.787,95%CI:0.643-0.893;p=0.049),与放射组学模型相当(0.879,95%CI:0.751-0.965;p>0.05)。在验证数据集中,列线图模型的灵敏度为 90.5%,特异性为 76.9%。

结论:该列线图模型可以作为一种非侵入性方法,根据临床需要,以高灵敏度或高特异性进行 VPI 预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/ce774923c5a1/TCA-15-23-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/50bff0f12ba2/TCA-15-23-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/d57e179d8206/TCA-15-23-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/08ee5e2f0d8f/TCA-15-23-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/d2a343165e7d/TCA-15-23-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/32f4c7636d6c/TCA-15-23-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/ce774923c5a1/TCA-15-23-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/50bff0f12ba2/TCA-15-23-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/d57e179d8206/TCA-15-23-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/08ee5e2f0d8f/TCA-15-23-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/d2a343165e7d/TCA-15-23-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/32f4c7636d6c/TCA-15-23-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a59/10761615/ce774923c5a1/TCA-15-23-g003.jpg

相似文献

[1]
Predicting visceral pleural invasion in lung adenocarcinoma presenting as part-solid density utilizing a nomogram model combined with radiomics and clinical features.

Thorac Cancer. 2024-1

[2]
Nomogram based on radiomics and CT features for predicting visceral pleural invasion of invasive adenocarcinoma ≤ 2 cm: A multicenter study.

Eur J Radiol. 2025-6-12

[3]
Development of a Radiomic-clinical Nomogram for Prediction of Survival in Patients with Nasal Extranodal Natural Killer/T-cell Lymphoma.

Curr Med Imaging. 2025-6-19

[4]
A nomogram based on multiparametric magnetic resonance imaging radiomics for prediction of acute pancreatitis activity.

BMC Med Imaging. 2025-7-1

[5]
An Integrative Clinical and Intra- and Peritumoral MRI Radiomics Nomogram for the Preoperative Prediction of Lymphovascular Invasion in Rectal Cancer.

Acad Radiol. 2025-3-4

[6]
Ensemble Machine Learning Classifiers Combining CT Radiomics and Clinical-Radiological Features for Preoperative Prediction of Pathological Invasiveness in Lung Adenocarcinoma Presenting as Part-Solid Nodules: A Multicenter Retrospective Study.

Technol Cancer Res Treat. 2025

[7]
Dual-energy CT Radiomics Combined with Quantitative Parameters for Differentiating Lung Adenocarcinoma From Squamous Cell Carcinoma: A Dual-center Study.

Acad Radiol. 2025-3

[8]
A Clinical-Radiomics Nomogram for the Preoperative Prediction of Aggressive Micropapillary and a Solid Pattern in Lung Adenocarcinoma.

Curr Oncol. 2025-5-30

[9]
Preoperative CT-based Radiomics Model for Predicting Micropapillary/Solid Patterns in Stage I Peripheral Lung Invasive Adenocarcinoma: A Propensity Score Matching Study.

J Thorac Imaging. 2025-7-1

[10]
Deep learning radiomics fusion model to predict visceral pleural invasion of clinical stage IA lung adenocarcinoma: a multicenter study.

J Cardiothorac Surg. 2025-5-28

引用本文的文献

[1]
Predicting visceral pleural invasion in invasive adenocarcinoma with a maximum diameter ≤ 3 cm based on F-FDG PET/CT radiomics.

Eur J Nucl Med Mol Imaging. 2025-8-14

[2]
Integrating radiomics features and CT semantic characteristics for predicting visceral pleural invasion in clinical stage Ia peripheral lung adenocarcinoma.

Discov Oncol. 2025-5-16

[3]
Prediction of visceral pleural invasion of clinical stage IA lung adenocarcinoma based on computed tomography features.

Transl Cancer Res. 2025-3-30

[4]
Using the length of pleural tag to predetermine pleural invasion by lung adenocarcinomas.

Front Oncol. 2024-11-1

[5]
Nomogram using intratumoral and peritumoral radiomics for the preoperative prediction of visceral pleural invasion in clinical stage IA lung adenocarcinoma.

J Cardiothorac Surg. 2024-5-31

[6]
Lung Cancer Surgery in Octogenarians: Implications and Advantages of Artificial Intelligence in the Preoperative Assessment.

Healthcare (Basel). 2024-4-7

本文引用的文献

[1]
Multivariate analysis based on the maximum standard unit value of F-fluorodeoxyglucose positron emission tomography/computed tomography and computed tomography features for preoperative predicting of visceral pleural invasion in patients with subpleural clinical stage IA peripheral lung adenocarcinoma.

Diagn Interv Radiol. 2023-3-29

[2]
The value of CT radiomics features to predict visceral pleural invasion in ≤3 cm peripheral type early non-small cell lung cancer.

J Xray Sci Technol. 2022

[3]
A Nomogram Combined Radiomics and Clinical Features as Imaging Biomarkers for Prediction of Visceral Pleural Invasion in Lung Adenocarcinoma.

Front Oncol. 2022-5-25

[4]
Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial.

Lancet. 2022-4-23

[5]
Correlation between pleural tags on CT and visceral pleural invasion of peripheral lung cancer that does not appear touching the pleural surface.

Eur Radiol. 2021-12

[6]
Visceral Pleural Invasion in Pulmonary Adenocarcinoma: Differences in CT Patterns between Solid and Subsolid Cancers.

Radiol Cardiothorac Imaging. 2019-8-29

[7]
Prognostic value of visceral pleural invasion in pure-solid and part-solid lung cancer patients.

Gen Thorac Cardiovasc Surg. 2021-2

[8]
Prognostic value of visceral pleural invasion in the stage pTNM non-small cell lung cancer: A study based on the SEER registry.

Curr Probl Cancer. 2021-2

[9]
FeAture Explorer (FAE): A tool for developing and comparing radiomics models.

PLoS One. 2020-8-17

[10]
Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction.

Eur Radiol. 2020-3-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索