Stam Mariëlle J, de Neeling Martijn G J, Keulen Bart J, Hubers Deborah, de Bie Rob M A, Schuurman Rick, Buijink Arthur W G, van Wijk Bernadette C M, Beudel Martijn
Department of Neurology, Amsterdam University Medical Centres, Amsterdam, Noord-Holland, The Netherlands
Department of Neurology, Amsterdam University Medical Centres, Amsterdam, Noord-Holland, The Netherlands.
BMJ Open. 2025 May 16;15(5):e091563. doi: 10.1136/bmjopen-2024-091563.
Deep brain stimulation (DBS) is a proven effective treatment for Parkinson's disease (PD). However, titrating DBS stimulation parameters is a labourious process and requires frequent hospital visits. Additionally, its current application uses continuous high-frequency stimulation at a constant intensity, which may reduce efficacy and cause side effects. The objective of the AI-DBS study is to identify patient-specific patterns of neuronal activity that are associated with the severity of motor symptoms of PD. This information is essential for the development of advanced responsive stimulation algorithms, which may improve the efficacy of DBS.
This longitudinal prospective observational cohort study will enrol 100 patients with PD who are bilaterally implanted with a sensing-enabled DBS system (Percept PC, Medtronic) in the subthalamic nucleus as part of standard clinical care. Local neuronal activity, specifically local field potential (LFP) signals, will be recorded during the first 6 months after DBS implantation. Correlations will be tested between spectral features of LFP data and symptom severity, which will be assessed using (1) inertial sensor data from a wearable smartwatch, (2) clinical rating scales and (3) patient diaries and analysed using conventional descriptive statistics and artificial intelligence algorithms. The primary objective is to identify patient-specific profiles of neuronal activity that are associated with the presence and severity of motor symptoms, forming a 'neuronal fingerprint'.
Ethical approval was granted by the local ethics committee of the Amsterdam UMC (registration number 2022.0368). Study findings will be disseminated through scientific journals and presented at national and international conferences.
深部脑刺激(DBS)是一种已被证实对帕金森病(PD)有效的治疗方法。然而,调整DBS刺激参数是一个繁琐的过程,需要频繁就诊。此外,其目前的应用采用恒定强度的连续高频刺激,这可能会降低疗效并导致副作用。人工智能-DBS研究的目的是识别与PD运动症状严重程度相关的患者特异性神经元活动模式。这些信息对于开发先进的响应性刺激算法至关重要,该算法可能会提高DBS的疗效。
这项纵向前瞻性观察性队列研究将招募100名PD患者,作为标准临床护理的一部分,他们双侧在丘脑底核植入了具有传感功能的DBS系统(美敦力公司的Percept PC)。在DBS植入后的前6个月内记录局部神经元活动,特别是局部场电位(LFP)信号。将测试LFP数据的频谱特征与症状严重程度之间的相关性,症状严重程度将使用以下方法进行评估:(1)来自可穿戴智能手表的惯性传感器数据;(2)临床评分量表;(3)患者日记,并使用传统描述性统计和人工智能算法进行分析。主要目标是识别与运动症状的存在和严重程度相关的患者特异性神经元活动特征,形成一个“神经元指纹”。
获得了阿姆斯特丹大学医学中心当地伦理委员会的伦理批准(注册号2022.0368)。研究结果将通过科学期刊进行传播,并在国内和国际会议上发表。