Bashkatov Aleksandr, Bürkle Florian, Demirkır Çayan, Ding Wei, Sanjay Vatsal, Babich Alexander, Yang Xuegeng, Mutschke Gerd, Czarske Jürgen, Lohse Detlef, Krug Dominik, Büttner Lars, Eckert Kerstin
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.
Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500AE, Enschede, Netherlands.
Nat Commun. 2025 May 16;16(1):4580. doi: 10.1038/s41467-025-59762-7.
Electrolytically generated gas bubbles can significantly hamper the overall electrolysis efficiency. Therefore it is crucial to understand their dynamics in order to optimise water electrolyzer systems. Herein, we elucidate a distinct transport mechanism whereby electrolyte droplets are sprayed into H bubbles. These droplets arise from the fragmentation of the Worthington jet, which is engendered by the coalescence with microbubbles. The robustness of this phenomenon is corroborated under both normal and microgravity conditions. Reminiscent of bursting bubbles on a liquid-gas interface, electrolyte spraying results in a flow inside the bubble. This flow couples, in an intriguing way, with the thermocapillary convection at the bubble's surface, clearly underlining the high interfacial mobility. In the case of electrode-attached bubbles, the sprayed droplets form electrolyte puddles affecting the dynamics near the three-phase contact line and favoring bubble detachment from the electrode. The results of this work unravel important insights into the physico-chemical aspects of electrolytic gas bubbles, integral for optimizing gas-evolving electrochemical systems.
电解产生的气泡会显著阻碍整体电解效率。因此,了解它们的动力学对于优化水电解槽系统至关重要。在此,我们阐明了一种独特的传输机制,即电解液滴被喷入氢气泡中。这些液滴源自沃辛顿射流的破碎,而沃辛顿射流是由与微气泡合并产生的。在正常和微重力条件下,这一现象的稳健性均得到了证实。类似于液 - 气界面上气泡的破裂,电解液喷雾会在气泡内部产生流动。这种流动以一种有趣的方式与气泡表面的热毛细对流相耦合,清楚地表明了高界面迁移率。在附着于电极的气泡情况下,喷雾形成的电解液水坑会影响三相接触线附近的动力学,并有利于气泡从电极上脱离。这项工作的结果揭示了电解气泡物理化学方面的重要见解,这对于优化析气电化学系统不可或缺。