文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Bioinformatics analysis of comorbid mechanisms between ischemic stroke and end stage renal disease.

作者信息

Wang Shuhong, Li Zhongda, Wang Xiao, Zhou Jiexue, Meng Shandong, Zhuang Jinyang, Zhou Yan, Zhao Qin, Zhu Chunli, Zhang Yusheng, Shen Sheng

机构信息

Department of Neurology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, Guangdong, China.

Department of Organ Transplantation, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No. 466, Xingang Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China.

出版信息

Sci Rep. 2025 May 16;15(1):17060. doi: 10.1038/s41598-025-01049-4.


DOI:10.1038/s41598-025-01049-4
PMID:40379713
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12084348/
Abstract

Ischemic stroke (IS) is a leading global cause of mortality and disability, particularly prominent in patients with end-stage renal disease (ESRD). Despite clinical evidence of their comorbidity, the molecular mechanisms underlying their interaction remain elusive. This study aims to identify shared biomarkers, gene regulatory networks, and therapeutic targets through integrative bioinformatics analyses. Gene expression datasets for IS (GSE16561, GSE22255) and ESRD (GSE37171, GSE142153) were obtained from gene expression omnibus (GEO). Weighted gene co-expression network analysis (WGCNA) and differential expression genes (DEGs) analysis identified shared genes and enriched pathways. Protein-protein interaction networks were constructed using STRING with clustering algorithms. Immune cell infiltration analysis was performed via CIBERSORT. Transcriptional regulatory networks were predicted using RcisTarget and miRcode. Key gene expressions were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in clinical samples. We identified 417 intersecting genes through WGCNA and 1712 shared differentially expressed genes. Among these, seven key genes (MRPL49, MRPS2, MRPS9, MRPS10, MRPS11, MRPS27, TFB1M) demonstrated central roles in mitochondrial function. Immune infiltration analysis revealed significant correlations with T cells and neutrophils. Pathway enrichment implicated these genes in transforming growth factor beta (TGF-β) signaling, p53 pathway, and G2/M checkpoint. Clinical validation confirmed significant downregulation of MRPS9, MRPS10, MRPS11, MRPS27 and TFB1M in comorbid patients. This study systematically elucidates the mitochondrial-immune interaction mechanisms in IS-ESRD comorbidity, highlighting the pivotal role of mitochondrial ribosomal protein (MRP) family genes in regulating cellular energetics and inflammatory responses. These findings provide new foundations for targeted therapies.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/6f9fdb54be47/41598_2025_1049_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/9017c480e8e8/41598_2025_1049_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/d029d215e4f7/41598_2025_1049_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/e3eb76f8de68/41598_2025_1049_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/e112a8d567dd/41598_2025_1049_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/9fcf9a923bc4/41598_2025_1049_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/e82768b7add1/41598_2025_1049_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/925ec10fec76/41598_2025_1049_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/37b2ec1db1e1/41598_2025_1049_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/2983a6dcf217/41598_2025_1049_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/0ccbf94b62cf/41598_2025_1049_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/6c6689354dcc/41598_2025_1049_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/d65cc98d4efd/41598_2025_1049_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/703a18bdd761/41598_2025_1049_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/6f9fdb54be47/41598_2025_1049_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/9017c480e8e8/41598_2025_1049_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/d029d215e4f7/41598_2025_1049_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/e3eb76f8de68/41598_2025_1049_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/e112a8d567dd/41598_2025_1049_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/9fcf9a923bc4/41598_2025_1049_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/e82768b7add1/41598_2025_1049_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/925ec10fec76/41598_2025_1049_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/37b2ec1db1e1/41598_2025_1049_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/2983a6dcf217/41598_2025_1049_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/0ccbf94b62cf/41598_2025_1049_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/6c6689354dcc/41598_2025_1049_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/d65cc98d4efd/41598_2025_1049_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/703a18bdd761/41598_2025_1049_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404a/12084348/6f9fdb54be47/41598_2025_1049_Fig14_HTML.jpg

相似文献

[1]
Bioinformatics analysis of comorbid mechanisms between ischemic stroke and end stage renal disease.

Sci Rep. 2025-5-16

[2]
Identifying immune cell infiltration and effective diagnostic biomarkers for ischemic stroke using bioinformatics analysis.

PLoS One. 2024-12-5

[3]
Identification of common mechanisms and biomarkers for dermatomyositis and atherosclerosis based on bioinformatics analysis.

Skin Res Technol. 2024-6

[4]
Circulating mRNA and microRNA profiling analysis in patients with ischemic stroke.

Mol Med Rep. 2020-8

[5]
Bioinformatics identification and validation of pyroptosis-related gene for ischemic stroke.

BMC Med Genomics. 2025-3-16

[6]
Identification and analysis of oxidative stress-related genes in hypoxic-ischemic brain damage using bioinformatics and experimental verification.

Immun Inflamm Dis. 2024-8

[7]
[Exploration of key ferroptosis-related genes as therapeutic targets for sepsis based on bioinformatics and the depiction of their immune profiles characterization].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024-10

[8]
Integrated bioinformatics combined with machine learning to analyze shared biomarkers and pathways in psoriasis and cervical squamous cell carcinoma.

Front Immunol. 2024

[9]
The impact of inflammation and iron metabolism on gene expression alterations in ischemic stroke: a bioinformatics approach.

Sci Rep. 2025-4-30

[10]
Exploration of the shared diagnostic genes and mechanisms between periodontitis and primary Sjögren's syndrome by integrated comprehensive bioinformatics analysis and machine learning.

Int Immunopharmacol. 2024-11-15

本文引用的文献

[1]
The Janus-faced nature of complement in hemodialysis: interplay between complement, inflammation, and bioincompatibility unveiling a self-amplifying loop contributing to organ damage.

Front Nephrol. 2024-12-3

[2]
Multicenter Validation of lncRNA and Target mRNA Diagnostic and Prognostic Biomarkers of Acute Ischemic Stroke From Peripheral Blood Leukocytes.

J Am Heart Assoc. 2024-7-16

[3]
Role of Uremic Toxins, Oxidative Stress, and Renal Fibrosis in Chronic Kidney Disease.

Antioxidants (Basel). 2024-6-3

[4]
Genetic variants affecting mitochondrial function provide further insights for kidney disease.

BMC Genomics. 2024-6-10

[5]
Advances in uremic toxin detection and monitoring in the management of chronic kidney disease progression to end-stage renal disease.

Analyst. 2024-5-13

[6]
MRPS9-Mediated Regulation of the PI3K/Akt/mTOR Pathway Inhibits Neuron Apoptosis and Protects Ischemic Stroke.

J Mol Neurosci. 2024-2-21

[7]
Inhibition of 15-hydroxyprostaglandin dehydrogenase protects neurons from ferroptosis in ischemic stroke.

MedComm (2020). 2024-1-7

[8]
The value of RPS15 and MRPS27 in ischemic stroke.

Medicine (Baltimore). 2023-8-18

[9]
Immunosenescence, gut dysbiosis, and chronic kidney disease: Interplay and implications for clinical management.

Biomed J. 2024-4

[10]
Identification of key biomarkers in ischemic stroke: single-cell sequencing and weighted co-expression network analysis.

Aging (Albany NY). 2023-7-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索