Suppr超能文献

全基因组位点特异性祖先分析揭示了印度杂交牛中的适应性混合。

Genome wide locus-specific ancestry analysis revealed adaptive admixtures in crossbred cattle of India.

作者信息

Goli Rangasai Chandra, Chishi Kiyevi G, Mahar Karan, Ganguly Indrajit, Singh Sanjeev, Dixit S P, Sruthi Oguru Sai, Choudhary Sonu, Diwakar Vikas, Rathi Pallavi, Chinnareddyvari Chandana Sree, Dige Mahesh, Metta Muralidhar, Kumar Amit, Aderao Ganesh N, Sukhija Nidhi, Kanaka K K

机构信息

ICAR-National Dairy Research Institute, Karnal, Haryana, India.

ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.

出版信息

Sci Rep. 2025 May 16;15(1):17069. doi: 10.1038/s41598-025-01971-7.

Abstract

Crossbreeding in India has been widely adopted to address low sustainability and poor productivity in non-descript cattle. This study analyzed Vrindavani (VRI) crossbred cattle and their parental populations (Holstein Friesian (HOL), Jersey (JER), Brown Swiss (BSW), Hariana (HAR) using SNP data to characterize locus-specific ancestry in VRI's genome along with admixture proportions and population stratification. Admixture analysis showed VRI have 67.3% HOL, 20.1% HAR, 8.5% JER, and 4% BSW ancestry. Locus-specific ancestry estimation identified regions with adaptive admixtures, which can be defined as admixed genomic regions favored by evolutionary forces and increased their frequencies, revealed 79.7% Bos taurus and 20.3% Bos indicus ancestry. Notably, regions on chromosome (chr) 2, 3, 4, 5, 7, 10, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, and 24 were associated with disease resistance contributed by indicine ancestry and chr 1, 6, 9, 11, 15, 18, 27, and 28 related to production which were contributed by taurine ancestry. The study concluded that increased taurine ancestry contributes to higher milk yield in VRI crosses, while indicine ancestry confers disease resistance and adaptability to tropical climates. This comprehensive genomic analysis suggests that while taurine inheritance enhances milk yield, a balance with indicine traits is essential for resilience. Understanding locus-specific ancestry patterns can aid in refining breeding strategies by selectively promoting beneficial alleles. Future advancements in genomic tools may enable controlled inheritance of desirable traits, maximizing heterosis in structured breeding programs for sustainable cattle production.

摘要

在印度,杂交育种已被广泛采用,以解决非纯种牛可持续性低和生产力差的问题。本研究分析了弗林达瓦尼(VRI)杂交牛及其亲本群体(荷斯坦弗里生牛(HOL)、泽西牛(JER)、瑞士褐牛(BSW)、哈里亚纳牛(HAR)),利用单核苷酸多态性(SNP)数据来表征VRI基因组中特定基因座的祖先成分,以及混合比例和群体分层情况。混合分析表明,VRI具有67.3%的HOL、20.1%的HAR、8.5%的JER和4%的BSW血统。特定基因座的祖先成分估计确定了具有适应性混合的区域,这些区域可被定义为受进化力量青睐并增加其频率的混合基因组区域,结果显示其具有79.7%的欧洲牛血统和20.3%的印度瘤牛血统。值得注意的是,第2、3、4、5、7、10、12、13、14、16、17、19、20、21、22、23和24号染色体上的区域与印度瘤牛血统贡献的抗病性相关,而第1、6、9、11、15、18、27和28号染色体与欧洲牛血统贡献的生产性能相关。该研究得出结论,欧洲牛血统的增加有助于提高VRI杂交牛的产奶量,而印度瘤牛血统赋予了抗病性和对热带气候的适应性。这项全面的基因组分析表明,虽然欧洲牛的遗传特性提高了产奶量,但与印度瘤牛的性状保持平衡对于恢复力至关重要。了解特定基因座的祖先模式有助于通过选择性地促进有益等位基因来优化育种策略。基因组工具的未来进展可能使理想性状的可控遗传成为可能,在结构化育种计划中最大限度地提高杂种优势,以实现可持续的养牛生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382c/12084602/a4f4610fd1db/41598_2025_1971_Fig1_HTML.jpg

相似文献

3
Revelation of genomic breed composition in a crossbred cattle of India with the help of Bovine50K BeadChip.
Genomics. 2020 Mar;112(2):1531-1535. doi: 10.1016/j.ygeno.2019.08.025. Epub 2019 Aug 28.
5
Genome-wide mapping of the dominance effects based on breed ancestry for semen traits in admixed Swiss Fleckvieh bulls.
J Dairy Sci. 2019 Dec;102(12):11217-11224. doi: 10.3168/jds.2019-16899. Epub 2019 Sep 20.
6
Detection of genomic regions that differentiate from ancestral breeds for milk yield in Indian crossbred cows.
Front Genet. 2023 Jan 9;13:1082802. doi: 10.3389/fgene.2022.1082802. eCollection 2022.
7
Genome-wide local ancestry and the functional consequences of admixture in African and European cattle populations.
Heredity (Edinb). 2025 Jan;134(1):49-63. doi: 10.1038/s41437-024-00734-w. Epub 2024 Nov 8.
8
Comprehensive selection signature analyses in dairy cattle exploiting purebred and crossbred genomic data.
Mamm Genome. 2023 Dec;34(4):615-631. doi: 10.1007/s00335-023-10021-4. Epub 2023 Oct 16.
9
Genome-wide genetic diversity, population structure and admixture analysis in African and Asian cattle breeds.
Animal. 2015 Feb;9(2):218-26. doi: 10.1017/S1751731114002560. Epub 2014 Oct 31.

本文引用的文献

3
5
[Runs of Homozygosity Decipher Genetic Diversity in Cattle Breed Dwelling in the Colder Regions of the World].
Cytogenet Genome Res. 2024;164(3-4):154-164. doi: 10.1159/000541723. Epub 2024 Oct 5.
6
Insights from homozygous signatures of cervus nippon revealed genetic architecture for components of fitness.
Mamm Genome. 2024 Dec;35(4):657-672. doi: 10.1007/s00335-024-10064-1. Epub 2024 Aug 27.
7
Global and Local Ancestry and its Importance: A Review.
Curr Genomics. 2024;25(4):237-260. doi: 10.2174/0113892029298909240426094055. Epub 2024 May 9.
8
Whole-transcriptome analysis of longissimus dorsi muscle in cattle-yaks reveals the regulatory functions of ADAMTS6 gene in myoblasts.
Int J Biol Macromol. 2024 Mar;262(Pt 1):129985. doi: 10.1016/j.ijbiomac.2024.129985. Epub 2024 Feb 9.
9
Genome-wide selection signatures address trait specific candidate genes in cattle indigenous to arid regions of India.
Anim Biotechnol. 2024 Nov;35(1):2290521. doi: 10.1080/10495398.2023.2290521. Epub 2023 Dec 13.
10
Genetic basis of ear length in sheep breeds sampled across the region from the Middle East to the Alps.
Anim Genet. 2024 Feb;55(1):123-133. doi: 10.1111/age.13387. Epub 2023 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验