Suppr超能文献

动态视觉搜索过程中分心时时空预测的年龄不变益处。

Age-invariant benefits of spatiotemporal predictions amidst distraction during dynamic visual search.

作者信息

Shalev Nir, Boettcher Sage, Nobre Anna C

机构信息

Department of Gerontology, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, IL, Israel.

The Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, IL, Israel.

出版信息

Sci Rep. 2025 May 16;15(1):17078. doi: 10.1038/s41598-025-01796-4.

Abstract

Visual search tasks are widely used to study attention amidst distraction, often revealing age-related differences. Research shows older adults typically exhibit poorer performance and greater sensitivity to distraction, reflecting declines in goal-driven attention. However, traditional search tasks are static and fail to capture the challenges and opportunities in natural environments, which include predictive structures within extended contexts. We designed a search variation where targets and distractors compete over time and embedded spatiotemporal regularities afford prediction-led guidance of attention. Critically, we manipulated the number of distractors to chart how benefits of expectations and deficits from distraction varied with age. Younger and older adults searched for multiple targets as they faded in and out of the display while varying the number of distracting elements between trials. Half the targets appeared at the same time and approximate locations and could be predicted. While we found evidence for decrement and elevated sensitivity to distraction with increasing age, benefits from predictions occurred in all groups. Interestingly, regardless of age, effects of predictions were only significant during periods of high distraction. This work extends our understanding of attention control through ageing to dynamic settings and indicates a dissociation between goal-directed and learning-driven attentional guidance.

摘要

视觉搜索任务被广泛用于研究分心状态下的注意力,常常揭示出与年龄相关的差异。研究表明,老年人通常表现较差,且对分心更敏感,这反映了目标驱动注意力的下降。然而,传统的搜索任务是静态的,无法捕捉自然环境中的挑战和机遇,自然环境包括扩展情境中的预测结构。我们设计了一种搜索变体,其中目标和干扰项随时间竞争,并且嵌入的时空规律提供了以预测为导向的注意力引导。关键的是,我们操纵干扰项的数量,以描绘期望的益处和分心造成的缺陷如何随年龄变化。年轻人和老年人在目标在显示屏中渐隐和渐现时搜索多个目标,同时在不同试验中改变干扰元素的数量。一半的目标同时出现在相同的时间和大致位置,并且可以被预测。虽然我们发现了随着年龄增长注意力下降和对分心敏感度提高的证据,但预测的益处出现在所有组中。有趣的是,无论年龄如何,预测的影响仅在高度分心期间显著。这项工作将我们对衰老过程中注意力控制的理解扩展到动态环境,并表明目标导向和学习驱动的注意力引导之间存在分离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51b0/12084335/39175ba6599d/41598_2025_1796_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验