Gonzalez-Duran Enrique, Kroop Xenia, Schadach Anne, Bock Ralph
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
Nat Plants. 2025 May 16. doi: 10.1038/s41477-025-02005-w.
Plant nuclear genomes contain thousands of genes of mitochondrial and plastid origin as the result of endosymbiotic gene transfer (EGT). EGT is a still-ongoing process, but the molecular mechanisms determining its frequency remain largely unknown. Here we demonstrate that nuclear double-strand break (DSB) repair is a strong suppressor of EGT. Through large-scale genetic screens in tobacco plants, we found that EGT from plastids to the nucleus occurs more frequently in somatic cells when individual DSB repair pathways are inactive. This effect is explained by the expected increase in the number and residence time of DSBs available as integration sites for organellar DNA. We also show that impaired DSB repair causes EGT to increase 5- to 20-fold in the male gametophyte. Together, our data (1) uncover DSB levels as a key determinant of EGT frequency, (2) reveal the strong mutagenic potential of organellar DNA and (3) suggest that changes in DNA repair capacity can impact EGT across evolutionary timescales.
由于内共生基因转移(EGT),植物核基因组包含数千个源自线粒体和质体的基因。EGT仍是一个正在进行的过程,但其频率的分子决定机制仍基本未知。在此,我们证明核双链断裂(DSB)修复是EGT的强力抑制因子。通过在烟草植株中进行大规模遗传筛选,我们发现当单个DSB修复途径失活时,质体到核的EGT在体细胞中更频繁发生。这种效应可由作为细胞器DNA整合位点的DSB数量和停留时间的预期增加来解释。我们还表明,受损的DSB修复会导致雄配子体中的EGT增加5至20倍。总之,我们的数据(1)揭示DSB水平是EGT频率的关键决定因素,(2)揭示细胞器DNA的强大诱变潜力,(3)表明DNA修复能力的变化可在进化时间尺度上影响EGT。