Suppr超能文献

封装在多壁碳纳米管内的一维CrI

One-dimensional CrI encapsulated within multi-walled carbon nanotubes.

作者信息

Çaha Ihsan, Ahmad Aqrab Ul, Boddapatti Loukya, Bañobre-López Manuel, Costa António T, Enyashin Andrey N, Li Weibin, Gargiani Pierluigi, Valvidares Manuel, Fernández-Rossier Joaquín, Deepak Francis Leonard

机构信息

International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, Portugal.

Institute of Solid State Chemistry UB RAS, Ekaterinburg, Russian Federation.

出版信息

Commun Chem. 2025 May 16;8(1):155. doi: 10.1038/s42004-025-01550-x.

Abstract

The production of single-walled inorganic nanotubes is challenging due to the energetic favorability of multi-walled structures during synthesis. CrI, a layered ferromagnetic insulator, has gained significant attention as the first stand-alone monolayer ferromagnet, sparking interest in two-dimensional magnetic materials. Here, we report the synthesis of high-quality, monolayer CrI nanotubes encapsulated within multiwalled carbon nanotubes (MWCNTs), ranging from 2 to 10 nm with an average diameter of 5.3 nm, as well as a smaller amount of CrI nanorods. Through aberration-corrected transmission electron microscopy, X-ray magnetic circular dichroism (XMCD) spectroscopy, and first-principles calculations, we explored the fundamental physics and magnetism of these 1D van der Waals heterostructures. These findings pave the way towards the exploration of non-collinear magnetic states in tubular geometries, driven by the interplay of magnetic anisotropy and curvature.

摘要

由于在合成过程中多壁结构在能量上更有利,单壁无机纳米管的制备具有挑战性。CrI是一种层状铁磁绝缘体,作为首个独立的单层铁磁体受到了广泛关注,引发了人们对二维磁性材料的兴趣。在此,我们报告了高质量的单层CrI纳米管的合成,这些纳米管封装在多壁碳纳米管(MWCNTs)中,直径范围为2至10纳米,平均直径为5.3纳米,同时还合成了少量的CrI纳米棒。通过像差校正透射电子显微镜、X射线磁圆二色性(XMCD)光谱和第一性原理计算,我们探索了这些一维范德华异质结构的基本物理性质和磁性。这些发现为在管状几何结构中探索由磁各向异性和曲率相互作用驱动的非共线磁态铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bef/12084315/8f156b337775/42004_2025_1550_Fig3_HTML.jpg

相似文献

1
One-dimensional CrI encapsulated within multi-walled carbon nanotubes.
Commun Chem. 2025 May 16;8(1):155. doi: 10.1038/s42004-025-01550-x.
3
Layer-resolved magnetic proximity effect in van der Waals heterostructures.
Nat Nanotechnol. 2020 Mar;15(3):187-191. doi: 10.1038/s41565-019-0629-1. Epub 2020 Jan 27.
4
Pressure-controlled interlayer magnetism in atomically thin CrI.
Nat Mater. 2019 Dec;18(12):1303-1308. doi: 10.1038/s41563-019-0506-1. Epub 2019 Oct 28.
5
Two-Dimensional van der Waals Nanoplatelets with Robust Ferromagnetism.
Nano Lett. 2020 Mar 11;20(3):2100-2106. doi: 10.1021/acs.nanolett.0c00102. Epub 2020 Feb 17.
6
Pressure-driven magnetic phase change in the CrI/BrCrI heterostructure.
Phys Chem Chem Phys. 2024 Dec 18;27(1):397-407. doi: 10.1039/d4cp02066a.
7
Interface depended electronic and magnetic properties of vertical CrI/WSe heterostructures.
RSC Adv. 2019 May 14;9(26):14766-14771. doi: 10.1039/c9ra01825e. eCollection 2019 May 9.
8
The enhanced effect of magnetism on the thermoelectric performance of a CrI monolayer.
Nanoscale. 2023 Jan 19;15(3):1032-1041. doi: 10.1039/d2nr05342j.
9
Coexistence of Magnetic Orders in Two-Dimensional Magnet CrI.
Nano Lett. 2020 Jan 8;20(1):553-558. doi: 10.1021/acs.nanolett.9b04282. Epub 2019 Dec 3.

本文引用的文献

1
Observation of intrinsic crystal phase in bare few-layer CrI.
Nanophotonics. 2022 Aug 19;11(19):4409-4417. doi: 10.1515/nanoph-2022-0246. eCollection 2022 Sep.
2
Direct observation of twisted stacking domains in the van der Waals magnet CrI.
Nat Commun. 2024 Jul 15;15(1):5925. doi: 10.1038/s41467-024-50314-z.
3
Spatially reconfigurable antiferromagnetic states in topologically rich free-standing nanomembranes.
Nat Mater. 2024 May;23(5):619-626. doi: 10.1038/s41563-024-01806-2. Epub 2024 Feb 19.
4
Layered materials as a platform for quantum technologies.
Nat Nanotechnol. 2023 Jun;18(6):555-571. doi: 10.1038/s41565-023-01354-x. Epub 2023 Jun 15.
5
Curved Magnetism in CrI_{3}.
Phys Rev Lett. 2022 Apr 29;128(17):177202. doi: 10.1103/PhysRevLett.128.177202.
6
Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer.
Science. 2021 Oct 29;374(6567):616-620. doi: 10.1126/science.abd5146. Epub 2021 Oct 28.
7
Van der Waals heterostructures for spintronics and opto-spintronics.
Nat Nanotechnol. 2021 Aug;16(8):856-868. doi: 10.1038/s41565-021-00936-x. Epub 2021 Jul 19.
8
py4DSTEM: A Software Package for Four-Dimensional Scanning Transmission Electron Microscopy Data Analysis.
Microsc Microanal. 2021 Aug;27(4):712-743. doi: 10.1017/S1431927621000477.
9
Topological superconductivity in a van der Waals heterostructure.
Nature. 2020 Dec;588(7838):424-428. doi: 10.1038/s41586-020-2989-y. Epub 2020 Dec 16.
10
Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures.
Nat Mater. 2020 Dec;19(12):1276-1289. doi: 10.1038/s41563-020-0791-8. Epub 2020 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验