Jani Hariom, Harrison Jack, Hooda Sonu, Prakash Saurav, Nandi Proloy, Hu Junxiong, Zeng Zhiyang, Lin Jheng-Cyuan, Godfrey Charles, Omar Ganesh Ji, Butcher Tim A, Raabe Jörg, Finizio Simone, Thean Aaron Voon-Yew, Ariando A, Radaelli Paolo G
Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
Department of Physics, National University of Singapore, Singapore, Singapore.
Nat Mater. 2024 May;23(5):619-626. doi: 10.1038/s41563-024-01806-2. Epub 2024 Feb 19.
Antiferromagnets hosting real-space topological textures are promising platforms to model fundamental ultrafast phenomena and explore spintronics. However, they have only been epitaxially fabricated on specific symmetry-matched substrates, thereby preserving their intrinsic magneto-crystalline order. This curtails their integration with dissimilar supports, restricting the scope of fundamental and applied investigations. Here we circumvent this limitation by designing detachable crystalline antiferromagnetic nanomembranes of α-FeO. First, we show-via transmission-based antiferromagnetic vector mapping-that flat nanomembranes host a spin-reorientation transition and rich topological phenomenology. Second, we exploit their extreme flexibility to demonstrate the reconfiguration of antiferromagnetic states across three-dimensional membrane folds resulting from flexure-induced strains. Finally, we combine these developments using a controlled manipulator to realize the strain-driven non-thermal generation of topological textures at room temperature. The integration of such free-standing antiferromagnetic layers with flat/curved nanostructures could enable spin texture designs via magnetoelastic/geometric effects in the quasi-static and dynamical regimes, opening new explorations into curvilinear antiferromagnetism and unconventional computing.
承载实空间拓扑纹理的反铁磁体是模拟基本超快现象和探索自旋电子学的有前景的平台。然而,它们仅在特定对称匹配的衬底上进行外延制备,从而保留其固有磁晶序。这限制了它们与不同支撑体的集成,限制了基础和应用研究的范围。在此,我们通过设计可分离的α-FeO晶体反铁磁纳米膜来规避这一限制。首先,我们通过基于透射的反铁磁矢量映射表明,扁平纳米膜存在自旋重取向转变和丰富的拓扑现象学。其次,我们利用它们的极端灵活性来证明由弯曲诱导应变导致的三维膜褶皱上反铁磁态的重构。最后,我们使用可控操纵器结合这些进展,在室温下实现应变驱动的拓扑纹理的非热产生。这种独立反铁磁层与平面/弯曲纳米结构的集成可以通过准静态和动态状态下的磁弹性/几何效应实现自旋纹理设计,开启对曲线反铁磁性和非常规计算的新探索。