Edström Alexander, Amoroso Danila, Picozzi Silvia, Barone Paolo, Stengel Massimiliano
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.
Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden.
Phys Rev Lett. 2022 Apr 29;128(17):177202. doi: 10.1103/PhysRevLett.128.177202.
Curved magnets attract considerable interest for their unusually rich phase diagram, often encompassing exotic (e.g., topological or chiral) spin states. Micromagnetic simulations are playing a central role in the theoretical understanding of such phenomena; their predictive power, however, rests on the availability of reliable model parameters to describe a given material or nanostructure. Here we demonstrate how noncollinear-spin polarized density-functional theory can be used to determine the flexomagnetic coupling coefficients in real systems. By focusing on monolayer CrI_{3}, we find a crossover as a function of curvature between a magnetization normal to the surface to a cycloidal state, which we rationalize in terms of effective anisotropy and Dzyaloshinskii-Moriya contributions to the magnetic energy. Our results reveal an unexpectedly large impact of spin-orbit interactions on the curvature-induced anisotropy, which we discuss in the context of existing phenomenological models.
弯曲磁体因其异常丰富的相图而备受关注,其相图通常包含奇异(例如拓扑或手性)自旋态。微磁模拟在对这类现象的理论理解中发挥着核心作用;然而,其预测能力取决于能否获得可靠的模型参数来描述给定的材料或纳米结构。在此,我们展示了如何利用非共线自旋极化密度泛函理论来确定实际系统中的挠曲磁耦合系数。通过聚焦于单层CrI₃,我们发现随着曲率变化,表面垂直磁化到摆线态之间存在交叉,我们根据有效各向异性以及磁能中的Dzyaloshinskii - Moriya贡献对此进行了解释。我们的结果揭示了自旋轨道相互作用对曲率诱导各向异性产生的意外巨大影响,我们在现有唯象模型的背景下对此进行了讨论。