Suppr超能文献

为特定于自闭症的多重疾病指数提供依据:一项比较队列研究。

Making a Case for an Autism-Specific Multimorbidity Index: A Comparative Cohort Study.

作者信息

Nijhof Dewy, Sosenko Filip, Ward Laura McKernan, Cairns Deborah, Hughes Laura, Rydzewska Ewelina

机构信息

School of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom.

Health Informatics Centre, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, United Kingdom.

出版信息

J Autism Dev Disord. 2025 May 16. doi: 10.1007/s10803-025-06823-x.

Abstract

Autistic people experience challenges in healthcare, including disparities in health outcomes and multimorbidity patterns distinct from the general population. This study investigated the efficacy of existing multimorbidity indices in predicting COVID- 19 mortality among autistic adults and proposes a bespoke index, the ASD-MI, tailored to their specific health profile. Using data from the CVD-COVID-UK/COVID-IMPACT Consortium, encompassing England's entire population, we identified 1,027 autistic adults hospitalized for COVID- 19, among whom 62 died due to the virus. Predictors were selected using logistic regression with fivefold cross-validation, comparing AUCs amongst multimorbidity indices. Diabetes, coronary heart disease, and thyroid disorders were selected as predictors for the ASD-MI, outperforming the Quan Index, a general population-based measure, with an AUC of 0.872 versus 0.828, respectively. Notably, the ASD-MI exhibited better model fit (pseudo-R2 0.25) compared to the Quan Index (pseudo-R2 0.20). These findings underscore the need for tailored indices in predicting mortality risks among autistic individuals. However, caution is warranted in interpreting results, given the limited understanding of morbidity burden in this population. Further research is needed to refine autism-specific indices and elucidate the complex interplay between long-term conditions and mortality risk, informing targeted interventions to address health disparities in autistic adults. This study highlights the importance of developing healthcare tools tailored to the unique needs of neurodivergent populations to improve health outcomes and reduce disparities.

摘要

自闭症患者在医疗保健方面面临挑战,包括健康结果的差异以及与普通人群不同的多种疾病模式。本研究调查了现有多种疾病指数在预测自闭症成年人中新冠病毒死亡率方面的有效性,并提出了一种针对其特定健康状况量身定制的专属指数——ASD-MI。利用来自CVD-COVID-UK/COVID-IMPACT联盟的数据(涵盖英格兰全体人口),我们确定了1027名因新冠病毒住院的自闭症成年人,其中62人死于该病毒。通过五重交叉验证的逻辑回归选择预测因素,比较多种疾病指数之间的曲线下面积(AUC)。糖尿病、冠心病和甲状腺疾病被选为ASD-MI的预测因素,其表现优于基于普通人群的Quan指数,AUC分别为0.872和0.828。值得注意的是,与Quan指数(伪R²为0.20)相比,ASD-MI表现出更好的模型拟合度(伪R²为0.25)。这些发现强调了在预测自闭症个体死亡风险时需要有量身定制的指数。然而,鉴于对该人群疾病负担的了解有限,在解释结果时需谨慎。需要进一步研究来完善自闭症特异性指数,并阐明长期疾病与死亡风险之间的复杂相互作用,为解决自闭症成年人健康差异的针对性干预提供依据。本研究强调了开发针对神经发育障碍人群独特需求的医疗保健工具以改善健康结果和减少差异的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验