Suppr超能文献

流感动态的数学建模:整合季节性和逐渐减弱的免疫力

Mathematical Modeling of Influenza Dynamics: Integrating Seasonality and Gradual Waning Immunity.

作者信息

Andreu-Vilarroig Carlos, González-Parra Gilberto, Villanueva Rafael-Jacinto

机构信息

Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camí de Vera, s/n, Valencia, 46022, Spain.

Department of Mathematics, New Mexico Tech, 801 Leroy Pl, Socorro, 87801, New Mexico, USA.

出版信息

Bull Math Biol. 2025 May 16;87(6):75. doi: 10.1007/s11538-025-01454-w.

Abstract

The dynamics of influenza virus spread is one of the most complex to model due to two crucial factors involved: seasonality and immunity. These factors have been typically addressed separately in mathematical modeling in epidemiology. In this paper, we present a mathematical modeling approach to consider simultaneously both forced-seasonality and gradual waning immunity. A seasonal SIRn model that integrates seasonality and gradual waning immunity is constructed. Seasonality has been modeled classically, by defining the transmission rate as a periodic function, with higher values in winter seasons. The progressive decline of immunity after infection has been introduced into the model structure by considering multiple recovered subpopulations or recovery states with transmission rates attenuated by a susceptibility factor that varies with the age of infection. To show the applicability of the proposed mathematical modeling approach to a real-world scenario, we have carried out a calibration of the model with the data series of influenza infections reported in the 2010-2020 period at the General Hospital of Castellón de la Plana, Spain. The results of the case study show the feasibility of the mathematical approach. We provide a discussion of the main features and insights of the proposed mathematical modeling approach presented in this study.

摘要

由于涉及两个关键因素

季节性和免疫力,流感病毒传播的动态过程是最难进行建模的过程之一。在流行病学的数学建模中,这些因素通常是分别处理的。在本文中,我们提出了一种数学建模方法,同时考虑强制季节性和逐渐减弱的免疫力。构建了一个整合季节性和逐渐减弱的免疫力的季节性SIRn模型。季节性的经典建模方法是,将传播率定义为一个周期函数,在冬季具有较高的值。通过考虑多个康复亚群或康复状态,将感染后免疫力的逐渐下降引入到模型结构中,这些康复亚群或康复状态的传播率会因一个随感染年龄变化的易感性因子而减弱。为了展示所提出的数学建模方法在实际场景中的适用性,我们利用西班牙卡斯特利翁德拉普拉纳总医院报告的2010 - 2020年期间流感感染数据系列对模型进行了校准。案例研究结果表明了该数学方法的可行性。我们对本研究中提出的数学建模方法的主要特点和见解进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d24/12084257/730e965503e0/11538_2025_1454_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验