Rashid Saima, Ali Ilyas, Fatima Nida, Fatima Tehreem, Agam Fekadu Tesgera, Elagan Sayed K
Department of Mathematics, Government College University, Faisalabad, 38000, Pakistan.
Department of Basic Sciences and Humanities, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad, Pakistan.
Sci Rep. 2025 Apr 26;15(1):14604. doi: 10.1038/s41598-025-93346-1.
Airborne respiratory tract infection typically occurs seasonally in subtropical countries, particularly during winter, when transmission and fatality rates considerably rise, indicating that low humidity and freezing temperatures facilitate the transmission of viral strains in age heterogeneity. Despite this, the atmospheric elements that contribute to periodic influenza occurrences and their critical influence on the spread of influenza stay ambiguous in various age groups. The oversight of undetected cases amid a widespread outbreak of transmissible illnesses results in an underappreciation of the prevalence of infection and the basic recurrence rate. This study proposes the dynamics of the influenza epidemic in the province of Madrid, Spain, with an emphasis on the effects of control employing actual data. The main challenge is accurately estimating the virus's rate of transmission and assessing the effectiveness of vaccination campaigns. By taking into account the modified Atangana-Baleanu-Caputo (mABC) fractional difference operator, we develop an analytical framework for an outbreak caused by influenza and broaden it to accommodate the fractional scenario. The non-negativity and boundedness are guaranteed by the computation of the fractional-order influenza system. At the disease-free equilibrium (DFE), we perform a local asymptotic stability analysis (LAS) and display the outcome for [Formula: see text]. In addition, periodic solutions and the model's uniform permanence are proved. Environmental factors to decrease interaction between different ages, increase immunization protection, and minimize vaccine refusal risks are the most efficient way to meet preventative and surveillance targets. Our system's best-fit parameter settings were detected using the Markov Chain Monte Carlo (M-C-M-C) technique with influenza information collected in Spain. We predict a basic reproduction number of 1.3645 (96% C.I: (1.3644, 1.3646)). The framework's essential variables are determined using unpredictability and sensitivity evaluation. To further bolster the operator's effectiveness, a number of tests of this novel kind of operator were conducted. We remark that in various time scale domains [Formula: see text], the investigated discrete formulations will be [Formula: see text]-nonincreasing or [Formula: see text]-nondecreasing by examining [Formula: see text]-monotonicity formulations and the basic properties of the suggested operator. Algorithms are constructed in the discrete generalized Mittag-Leffler (GML) kernel for mathematical simulations, emphasizing the effects of the infection resulting from multiple factors. The dynamical technique used to build the influenza framework was significantly impacted by fractional-order. In order to lessen the infections, time-dependent control factors are also implemented. The optimality criteria are produced by applying Pontryagin's maximal argument to prove the validity of the most effective control. If vaccine penetration and immunity rates have been resurrected, achieving the control objective requires 12 months longer and costs less than the previous scenario.
在亚热带国家,空气传播的呼吸道感染通常呈季节性发生,尤其是在冬季,此时传播率和死亡率会大幅上升,这表明低湿度和低温有利于病毒株在不同年龄层中的传播。尽管如此,导致流感周期性发生的大气因素及其对流感传播的关键影响在不同年龄组中仍不明确。在传染性疾病广泛爆发期间,对未检测到的病例的疏忽导致对感染流行率和基本复发率的低估。本研究提出了西班牙马德里省流感流行的动态情况,重点关注采用实际数据进行控制的效果。主要挑战是准确估计病毒的传播率并评估疫苗接种运动的有效性。通过考虑修正的阿坦加纳 - 巴莱努 - 卡普托(mABC)分数阶差分算子,我们为流感引发的疫情开发了一个分析框架,并将其扩展以适应分数阶情况。分数阶流感系统的计算保证了非负性和有界性。在无病平衡点(DFE),我们进行了局部渐近稳定性分析(LAS)并展示了[公式:见原文]的结果。此外,还证明了周期解和模型的一致持久性。减少不同年龄层之间的相互作用、增强免疫保护以及最小化疫苗拒绝风险的环境因素是实现预防和监测目标的最有效方法。我们使用马尔可夫链蒙特卡罗(M - C - M - C)技术结合在西班牙收集的流感信息检测了我们系统的最佳拟合参数设置。我们预测基本再生数为1.3645(96%置信区间:(1.3644, 1.3646))。通过不确定性和敏感性评估确定了框架的关键变量。为了进一步提高算子的有效性,对这种新型算子进行了多次测试。我们指出,在不同的时间尺度域[公式:见原文]中,通过检查[公式:见原文]单调性公式和所建议算子的基本性质,所研究的离散公式将是[公式:见原文]非递增或[公式:见原文]非递减的。在离散广义米塔格 - 莱夫勒(GML)核中构建算法用于数学模拟,强调多种因素导致感染的影响。用于构建流感框架的动力学技术受到分数阶的显著影响。为了减少感染,还实施了与时间相关的控制因素。通过应用庞特里亚金极大值原理来证明最有效控制的有效性,从而产生最优性标准。如果疫苗渗透率和免疫率已经恢复,实现控制目标需要比之前的情况多12个月的时间,且成本更低。