血管疾病中的损伤相关分子模式(DAMPs)

Damage-associated molecular patterns (DAMPs) in vascular diseases.

作者信息

Antonello Jacob, Roy Partha

机构信息

Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

J Biol Chem. 2025 May 15;301(6):110241. doi: 10.1016/j.jbc.2025.110241.

Abstract

Research into the role of chronic sterile inflammation (i.e., a prolonged inflammatory state not caused by an infectious agent) in vascular disease progression has continued to grow over the last few decades. DAMPs have a critical role in this research due to their ability to link stress-causing cardiovascular risk factors to inflammatory phenotypes seen in vascular disease. In this mini-review, we will briefly summarize the DAMPs and receptor signaling pathways that have been extensively studied in the context of vascular disease, including TLRs, RAGE, cGAS-STING, and the NLRP3 inflammasome. In particular, we will discuss how these pathways can promote the release of pro-inflammatory cytokines and chemokines as well as vascular remodeling. Next, we will summarize the results of studies that have linked the various pro-inflammatory effects of DAMPs with the phenotypes in the context of vascular diseases, including atherosclerosis, fibrosis, aneurysm, ischemia, and hypertension. Finally, we will discuss some pre-clinical and clinical trials that have targeted DAMPs, their receptors, or the products of their signaling pathways, and discuss the outlook and future directions for the field at large.

摘要

在过去几十年中,关于慢性无菌性炎症(即由感染因子以外的因素引起的长期炎症状态)在血管疾病进展中作用的研究持续增加。由于损伤相关分子模式(DAMPs)能够将引发应激的心血管危险因素与血管疾病中出现的炎症表型联系起来,因此在该研究中具有关键作用。在本综述中,我们将简要总结在血管疾病背景下已被广泛研究的DAMPs及其受体信号通路,包括Toll样受体(TLRs)、晚期糖基化终末产物受体(RAGE)、环鸟苷酸-腺苷酸合成酶-干扰素基因刺激蛋白(cGAS-STING)和NLRP3炎性小体。特别地,我们将讨论这些信号通路如何促进促炎细胞因子和趋化因子的释放以及血管重塑。接下来,我们将总结在血管疾病(包括动脉粥样硬化、纤维化、动脉瘤、缺血和高血压)背景下,将DAMPs的各种促炎作用与表型联系起来的研究结果。最后,我们将讨论一些针对DAMPs、其受体或其信号通路产物的临床前和临床试验,并探讨该领域的前景和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9738/12173740/2b9c896aa25e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索