Suppr超能文献

利用模拟脑组织生物力学特性的三维微生理系统解析胶质母细胞瘤中周细胞诱导的替莫唑胺耐药性。

Deciphering pericyte-induced temozolomide resistance in glioblastoma with a 3D microphysiological system mimicking the biomechanical properties of brain tissue.

作者信息

Maity Surjendu, Jewell Christopher, Yilgor Can, Kawakita Satoru, Sharma Saurabh, Gomez Alejandro, Mecwan Marvin, Falcone Natashya, Ermis Menekse, Monirizad Mahsa, Kouchehbaghi Negar Hosseinzadeh, Zehtabi Fatemeh, Khorsandi Danial, Dokmeci Mehmet Remzi, Moniz-Garcia Diogo, Quiñones-Hinojosa Alfredo, Khademhosseini Ali, Jucaud Vadim

机构信息

Terasaki Institute for Biomedical Innovation, Woodland Hills, CA, 91367, USA.; Department of Orthopedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27705, USA.

Terasaki Institute for Biomedical Innovation, Woodland Hills, CA, 91367, USA.

出版信息

Acta Biomater. 2025 Jun 15;200:202-217. doi: 10.1016/j.actbio.2025.05.038. Epub 2025 May 16.

Abstract

Glioblastoma (GBM) is a highly aggressive malignancy with a poor prognosis and frequent resistance to temozolomide (TMZ), the standard-of-care chemotherapy. The complex mechanisms underlying GBM chemoresistance, particularly the role of pericytes, remain poorly understood due to the lack of physiologically relevant in vitro models replicating the complex tumor microenvironment (TME). Here, we present a biomimetic 3D GBM microphysiological system that replicates the biomechanical properties of brain tissue (G'∼800Pa, G"∼100Pa) and enables the study of pericyte-mediated TMZ resistance. GBM spheroids (U87, LN229, PDM140) were cultured alone or co-cultured with pericytes in a composite hydrogel for 14 days and remained viable and proliferative. In response to TMZ, PDM140 was the most sensitive (IC=73μM), followed by LN229 (IC=278μM) and U87 (IC=446μM). Co-culture with pericytes significantly increased GBM spheroid viability by 22.7% (PDM140), 32.5% (LN229), and 22.1% (U87), confirming pericyte-induced TMZ resistance. Notably, pericytes exhibited a 160-fold upregulation of C-C motif chemokine ligand 5 (CCL5) upon TMZ treatment, implicating the CCL5-mediated pathway in chemoresistance. This innovative brain-mimicking 3D GBM model provides a physiologically relevant platform for studying tumor-pericyte interactions and testing therapeutic strategies targeting CCL5-mediated resistance mechanisms in GBM. STATEMENT OF SIGNIFICANCE: We developed a multicellular 3D glioblastoma microphysiological system mimicking the physicochemical properties of brain tissues and pericyte-mediated TMZ resistance that can be used to screen for standard-of-care chemotherapy. This advanced hydrogel-based platform demonstrated the critical role of the glioblastoma tumor microenvironment in modulating chemotherapy sensitivity, particularly the pericyte-induced CCL5-CCR5 paracrine axis that can lead to the identification of therapeutic targets within the CCL5-CCR5 pathway toward more effective treatments disrupting these resistance mechanisms. Overall, the proposed 3D glioblastoma microphysiological system can transform drug screening and personalized treatment for GBM by offering ethical and cost-effective alternatives to animal testing and more effective drug screening and discovery efforts, ultimately improving GBM patient outcomes.

摘要

胶质母细胞瘤(GBM)是一种侵袭性很强的恶性肿瘤,预后较差,且对标准护理化疗药物替莫唑胺(TMZ)常常耐药。由于缺乏能够复制复杂肿瘤微环境(TME)的生理相关体外模型,GBM化疗耐药的复杂机制,尤其是周细胞的作用,仍知之甚少。在此,我们展示了一种仿生3D GBM微生理系统,该系统复制了脑组织的生物力学特性(储能模量G'800Pa,损耗模量G"100Pa),并能够研究周细胞介导的TMZ耐药性。将GBM球体(U87、LN229、PDM140)单独培养或与周细胞在复合水凝胶中共培养14天,它们仍保持活力并增殖。在TMZ作用下,PDM140最敏感(半数抑制浓度IC=73μM),其次是LN229(IC=278μM)和U87(IC=446μM)。与周细胞共培养显著提高了GBM球体的活力,PDM140提高了22.7%,LN229提高了32.5%,U8y提高了22.1%,证实了周细胞诱导的TMZ耐药性。值得注意的是,周细胞在TMZ处理后C-C基序趋化因子配体5(CCL5)上调了160倍,这表明CCL5介导的途径与化疗耐药有关。这种创新的模拟大脑的3D GBM模型为研究肿瘤-周细胞相互作用以及测试针对GBM中CCL5介导的耐药机制的治疗策略提供了一个生理相关平台。意义声明:我们开发了一种多细胞3D胶质母细胞瘤微生理系统,该系统模拟了脑组织的物理化学特性以及周细胞介导的TMZ耐药性,可用于筛选标准护理化疗药物。这个先进的基于水凝胶的平台证明了胶质母细胞瘤肿瘤微环境在调节化疗敏感性方面的关键作用,特别是周细胞诱导的CCL-CCR旁分泌轴,这可能有助于识别CCL5-CCR5途径中的治疗靶点,从而实现更有效的治疗,破坏这些耐药机制。总体而言,所提出的3D胶质母细胞瘤微生理系统可以通过提供符合伦理且具有成本效益的动物试验替代方案以及更有效的药物筛选和发现工作,改变GBM的药物筛选和个性化治疗,最终改善GBM患者的治疗结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验