Jiménez-Boland Daniel, Robles-Fernández Ana, Martín-Rodríguez Antonio, Cuadros Miguel Ángel, Traverso José Ángel, Sánchez-Moreno Paola, Bramini Mattia
Department of Cell Biology, Faculty of Sciences, Universidad de Granada, 18071 Granada, Spain.
Department of Applied Physics, Faculty of Sciences, Universidad de Granada, 18071 Granada, Spain.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):35288-35303. doi: 10.1021/acsami.5c07306. Epub 2025 Jun 9.
Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor characterized by poor prognosis and limited treatment options. Despite current therapies combining surgery, radiotherapy, and chemotherapy, GBM remains highly resistant to treatment, largely due to the challenges of drug delivery across the blood-brain barrier (BBB). Nanoparticles (NPs) have shown promise as drug carriers, but their clinical translation is hindered by limited brain accumulation and rapid clearance by the immune system. In this study, we explored the potential of GBM cell membrane (CM)-coated NPs (G-NPs) as a strategy to improve GBM targeting and, therefore, efficient treatments. We optimized the CM isolation protocol using U87-MG human GBM cells and identified the Heidolph homogenizer as the most effective technique for producing pure, enriched CM fractions, proposing it as a standard method due to its high scalability. G-NPs were extensively characterized, demonstrating excellent colloidal stability under biological conditions. Flow cytometry revealed the enhanced uptake of G-NPs by U87-MG cells compared to non-coated NPs. Notably, the specific homotargeting capability of G-NPs toward human glioblastoma cells was ultimately confirmed by demonstrating a marked specificity of the glioblastoma CM coating when compared to human fibroblast CM-coated NPs, highlighting selective tumor cell-type targeting. Additionally, the coating of NPs with GBM CMs not only did not impede the physiological passage of NPs across the human in vitro BBB, but interestingly, increased the BBB permeability to G-NPs. These findings highlight that biomimetic coating of NPs with GBM cells is a potential strategy to create platforms for the targeted chemotherapy of GBM.
多形性胶质母细胞瘤(GBM)是最常见且侵袭性最强的恶性脑肿瘤,其预后较差且治疗选择有限。尽管目前的治疗方法包括手术、放疗和化疗,但GBM对治疗仍具有高度抗性,这主要是由于药物穿过血脑屏障(BBB)存在挑战。纳米颗粒(NPs)已显示出作为药物载体的潜力,但其临床转化受到脑内蓄积有限和免疫系统快速清除的阻碍。在本研究中,我们探索了用GBM细胞膜(CM)包被的NPs(G-NPs)作为改善GBM靶向性从而实现有效治疗的策略的潜力。我们使用U87-MG人GBM细胞优化了CM分离方案,并确定Heidolph匀浆器是生产纯净、富集CM组分的最有效技术,因其具有高扩展性而将其作为标准方法。对G-NPs进行了广泛表征,证明其在生物学条件下具有出色的胶体稳定性。流式细胞术显示,与未包被的NPs相比,U87-MG细胞对G-NPs的摄取增强。值得注意的是,与人类成纤维细胞CM包被的NPs相比,GBM CM包被的显著特异性最终证实了G-NPs对人胶质母细胞瘤细胞的特异性同靶向能力,突出了选择性肿瘤细胞类型靶向。此外,用GBM CMs包被NPs不仅不妨碍NPs在人体外BBB中的生理通过,而且有趣的是,增加了BBB对G-NPs的通透性。这些发现突出表明,用GBM细胞对NPs进行仿生包被是为GBM靶向化疗创建平台的一种潜在策略。
ACS Appl Mater Interfaces. 2025-6-18
Phys Med Biol. 2025-6-20
Cochrane Database Syst Rev. 2021-5-4
Cochrane Database Syst Rev. 2018-2-6
Cancer Commun (Lond). 2025-3-14
Cochrane Database Syst Rev. 2021-4-19
Cancer Pathog Ther. 2023-12-2
J Transl Med. 2024-6-6
Cancer Cell Int. 2024-5-7
Biomed Pharmacother. 2024-6
Curr Neurol Neurosci Rep. 2024-5