Martell Emma, Kuzmychova Helgi, Senthil Harshal, Chawla Ujala, Kaul Esha, Grewal Akaljot, Banerji Versha, Anderson Christopher M, Venugopal Chitra, Miller Donald, Werbowetski-Ogilvie Tamra E, Singh Sheila K, Sharif Tanveer
Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada R3E 3P5.
Department of Human Anatomy & Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada R3E 0J9.
Neuro Oncol. 2025 Jun 21;27(5):1193-1209. doi: 10.1093/neuonc/noaf008.
The mitochondrial pyruvate carrier (MPC), a central metabolic conduit linking glycolysis and mitochondrial metabolism, is instrumental in energy production. However, the role of the MPC in cancer is controversial. In particular, the importance of the MPC in glioblastoma (GBM) disease progression following standard temozolomide (TMZ) and radiation therapy (RT) remains unexplored.
Leveraging in vitro and in vivo patient-derived models of TMZ-RT treatment in GBM, we characterize the temporal dynamics of MPC abundance and downstream metabolic consequences using state-of-the-art molecular, metabolic, and functional assays.
Our findings unveil a disease stage-specific role for the MPC, where in posttreatment GBM, but not therapy-naïve tumors, the MPC acts as a central metabolic regulator that suppresses differentiation. Temporal profiling reveals a dynamic metabolic rewiring where a steady increase in MPC abundance favors a shift towards enhanced mitochondrial metabolic activity across patient GBM samples. Intriguingly, while overall mitochondrial metabolism is increased, acetyl-CoA production is reduced in posttreatment GBM cells, hindering histone acetylation and silencing neural differentiation genes in an MPC-dependent manner. Finally, the therapeutic translations of these findings are highlighted by the successful pre-clinical patient-derived orthotopic xenograft trials utilizing a blood-brain-barrier permeable MPC inhibitor, MSDC-0160, which augments standard TMZ-RT therapy to mitigate disease relapse and prolong animal survival.
Our findings demonstrate the critical role of the MPC in mediating GBM aggressiveness and molecular evolution following standard TMZ-RT treatment, illuminating a therapeutically-relevant metabolic vulnerability to potentially improve survival outcomes for GBM patients.
线粒体丙酮酸载体(MPC)是连接糖酵解和线粒体代谢的核心代谢通道,对能量产生至关重要。然而,MPC在癌症中的作用存在争议。特别是,MPC在胶质母细胞瘤(GBM)经标准替莫唑胺(TMZ)和放射治疗(RT)后的疾病进展中的重要性仍未得到探索。
利用体外和体内GBM患者来源的TMZ-RT治疗模型,我们使用最先进的分子、代谢和功能分析方法,对MPC丰度的时间动态变化及其下游代谢后果进行了表征。
我们的研究结果揭示了MPC在疾病阶段的特定作用,即在治疗后的GBM中,而非未经治疗的肿瘤中,MPC作为一种核心代谢调节因子抑制分化。时间分析揭示了一种动态的代谢重塑,其中MPC丰度的稳定增加有利于患者GBM样本向增强的线粒体代谢活性转变。有趣的是,虽然整体线粒体代谢增加,但治疗后GBM细胞中的乙酰辅酶A产量减少,以MPC依赖的方式阻碍组蛋白乙酰化并使神经分化基因沉默。最后,利用血脑屏障可渗透的MPC抑制剂MSDC-0160进行的成功的临床前患者来源的原位异种移植试验突出了这些发现的治疗转化,该抑制剂增强了标准TMZ-RT疗法,以减轻疾病复发并延长动物存活时间。
我们的研究结果证明了MPC在介导标准TMZ-RT治疗后GBM的侵袭性和分子进化中的关键作用,揭示了一种与治疗相关的代谢脆弱性,有可能改善GBM患者的生存结果。