Kamiya Yoshinobu, Sato Yu, Oriki Tomohiro, Kishida Yuko, Sugiyama Haruki, He Waner, Zhao Kexiang, Michinobu Tsuyoshi, Uekusa Hidehiro, Tanaka Ken
Department of Chemical Science and Engineering, Institute of Science Tokyo, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
Department of Chemistry, Institute of Science Tokyo, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
Angew Chem Int Ed Engl. 2025 Jul;64(29):e202505622. doi: 10.1002/anie.202505622. Epub 2025 May 30.
Azulene derivatives have attracted much attention for their application in organic electronic materials and devices because of their large dipole moment and small HOMO-LUMO energy gap. As these physical properties of azulene depend on its substitution and condensation patterns, developing methods to synthesize functionalized and π-extended azulenes is desirable. However, synthesizing π-extended azulenes requires harsh reaction conditions, making it hard to achieve both functionalization and π-extension. Here, we report the synthesis of electron-deficient azulene-embedded polycyclic aromatic hydrocarbons (PAHs) with two alkoxycarbonyl groups by the rhodium-catalyzed intermolecular arylative [2 + 2 + 1] annulation of teraryl diynes with dialkyl acetylenedicarboxylates followed by oxidation at room temperature. Interestingly, for the electron-rich diyne, prolonged oxidation time after the arylative [2 + 2 + 1] annulation yields a helicene-like bis(azulene-embedded PAH) in good yield. Thus, obtained electron-deficient fused azulenes have small HOMO-LUMO energy gaps (up to E = 1.52 and E = 2.06), resulting in long-wavelength absorption extending into the near-infrared region. Due to bulky electron-withdrawing groups and π-extension, the molecule becomes saddle-shaped and highly polarized, and strong π-π stacking interactions are observed in both the solid and solution states.
薁衍生物因其大偶极矩和小的最高占据分子轨道-最低未占据分子轨道(HOMO-LUMO)能隙而在有机电子材料和器件中的应用备受关注。由于薁的这些物理性质取决于其取代和缩合模式,因此开发合成功能化和π-扩展薁的方法是很有必要的。然而,合成π-扩展薁需要苛刻的反应条件,使得功能化和π-扩展难以同时实现。在此,我们报道了通过铑催化的三联芳基二炔与二烷基乙炔二羧酸酯的分子间芳基化[2 + 2 + 1]环化反应,随后在室温下氧化,合成了具有两个烷氧羰基的缺电子薁嵌入多环芳烃(PAHs)。有趣的是,对于富电子二炔,芳基化[2 + 2 + 1]环化反应后的延长氧化时间能以良好的产率得到类螺旋状双(薁嵌入PAH)。因此,所得到的缺电子稠合薁具有小的HOMO-LUMO能隙(高达E = 1.52和E = 2.06),导致长波长吸收延伸至近红外区域。由于庞大的吸电子基团和π-扩展,分子呈鞍形且高度极化,并且在固态和溶液态中均观察到强的π-π堆积相互作用。