Shi Wensong, Hu Yuzhui, Chang Guotao, Yang Yulun, Qian He, Song Yinsen, Wei Zhengpan, Gao Liang, Yi Hang, Wu Sikai, Wang Kun, Huo Huandong, Mao Yousheng, Sun Yingli, Li Ming, Ai Siyuan, Zhao Liang, Li Xiangnan, Zheng Huiyu
Department of Thoracic Surgery, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, China.
Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Quant Imaging Med Surg. 2025 May 1;15(5):4487-4499. doi: 10.21037/qims-24-2127. Epub 2025 Apr 15.
Medical research indicates that computed tomography (CT) values are vital for diagnosing and predicting the invasiveness of pulmonary nodules. This study investigates which three-dimensional (3D) CT density measurement value is most stable for predicting the invasiveness of T1 stage lung adenocarcinoma and advantageous for preoperative planning.
A retrospective analysis was conducted on a total of 2,080 patients with pulmonary nodules of atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive carcinoma (MIA), and invasive adenocarcinoma (IAC) confirmed by surgery in six centers including Zhengzhou People's Hospital (between November 2017 and November 2023), Cancer Hospital Chinese Academy of Medical Sciences (between August 2023 and April 2024), The First Affiliated Hospital of Zhengzhou University (between June 2023 and December 2023), Huadong Hospital Affiliated to Fudan University (between May 2012 and September 2018), Beijing Liangxiang Hospital (between May 2017 and December 2023), and the Ninth People's Hospital of Zhengzhou (between November 2017 and January 2024). Clinical history and thin-layer chest CT were collected. Patients were classified into non-invasive (AAH, AIS, MIA; n=1,297) and invasive (IAC; n=783) groups based on pathology. Thin-layer CT images were analyzed using the Shukun artificial intelligence (AI) workstation, and subgroup analysis was performed according to the 3D maximum diameter (T1a: ≤10 mm, T1b: 10 mm < T1b ≤ 20 mm, T1c: 20 mm < T1c ≤ 30 mm). 3D CT density-related features were selected, receiver operating characteristic (ROC) curves were drawn, and the area under the curve (AUC) and 95% confidence interval (CI) were calculated. Further subgroup analysis was conducted on T1a, T1b, and T1c groups to determine the most stable CT value for predicting invasiveness.
The study encompassed 2,080 nodules with a gender distribution of 33.17% male and 66.83% female, averaging 56.54±11.31 years. Nodule distribution: 728 (35.00%) in right upper lobe (RUL), 117 (5.62%) in right middle lobe (RML), 393 (18.89%) in right lower lobe (RLL), 531 (25.53%) in left upper lobe (LUL), and 311 (14.95%) in left lower lobe (LLL). The non-invasive group included 1,297 nodules, and the invasive group 783. The 90th percentile of CT values emerged as the most stable indicator, with an AUC of 0.863 (95% CI: 0.864-0.879), at a threshold of -241.5 Hounsfield unit (HU). Subgroup analysis confirmed the 90th percentile of CT values as the most stable predictor in all groups, with AUCs and 95% CIs of [0.830, 0.778-0.881], [0.843, 0.817-0.868], and [0.893, 0.850-0.936], respectively.
The 90th percentile of CT values reliably predicts invasiveness in stage T1 lung adenocarcinoma. This finding facilitates the clinical assessment of its invasiveness, enabling a better grasp of the timing of clinical intervention and the formulation of surgical plans.
医学研究表明,计算机断层扫描(CT)值对于诊断和预测肺结节的侵袭性至关重要。本研究旨在探究哪种三维(3D)CT密度测量值在预测T1期肺腺癌的侵袭性方面最稳定,且有利于术前规划。
对郑州人民医院(2017年11月至2023年11月)、中国医学科学院肿瘤医院(2023年8月至2024年4月)、郑州大学第一附属医院(2023年6月至2023年12月)、复旦大学附属华东医院(2012年5月至2018年9月)、北京良乡医院(2017年5月至2023年12月)和郑州第九人民医院(2017年11月至2024年1月)这六个中心共2080例经手术确诊为非典型腺瘤样增生(AAH)、原位腺癌(AIS)、微浸润癌(MIA)和浸润性腺癌(IAC)的肺结节患者进行回顾性分析。收集临床病史和胸部薄层CT。根据病理将患者分为非侵袭性组(AAH、AIS、MIA;n = 1297)和侵袭性组(IAC;n = 783)。使用舒坤人工智能(AI)工作站分析薄层CT图像,并根据3D最大直径进行亚组分析(T1a:≤10 mm,T1b:10 mm < T1b≤20 mm,T1c:20 mm < T1c≤30 mm)。选择3D CT密度相关特征,绘制受试者操作特征(ROC)曲线,并计算曲线下面积(AUC)和95%置信区间(CI)。对T1a、T1b和T1c组进行进一步亚组分析,以确定预测侵袭性最稳定的CT值。
该研究纳入2080个结节,性别分布为男性33.17%,女性66.83%,平均年龄56.54±11.31岁。结节分布:右上叶(RUL)728个(35.00%),右中叶(RML)117个(5.62%),右下叶(RLL)393个(18.89%),左上叶(LUL)531个(25.53%),左下叶(LLL)311个(14.95%)。非侵袭性组包括1297个结节,侵袭性组783个。CT值的第90百分位数是最稳定的指标,AUC为0.863(95%CI:0.864 - 0.879),阈值为-241.5亨氏单位(HU)。亚组分析证实CT值的第90百分位数在所有组中都是最稳定的预测指标,AUC和95%CI分别为[0.830,0.778 - 0.881]、[0.843,0.817 - 0.868]和[0.893,0.850 - 0.936]。
CT值的第90百分位数可可靠地预测T1期肺腺癌的侵袭性。这一发现有助于对其侵袭性进行临床评估,从而更好地把握临床干预时机并制定手术方案。