Suppr超能文献

实性部分磨玻璃结节型肺腺癌病理分类预测的CT特征及定量分析

CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction.

作者信息

Li Xiaohu, Zhang Wei, Yu Yongqiang, Zhang Guihong, Zhou Lifen, Wu Zongshan, Liu Bin

机构信息

Department of Radiology, the First Affiliated Hosptial of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China.

Department of Radiology, The Lu'an affiliated hospital, Anhui Medical University, No.21wanxi Road, Luan, Anhui, China.

出版信息

BMC Cancer. 2020 Jan 28;20(1):60. doi: 10.1186/s12885-020-6556-6.

Abstract

BACKGROUND

The value of the CT features and quantitative analysis of lung subsolid nodules (SSNs) in the prediction of the pathological grading of lung adenocarcinoma is discussed.

METHODS

Clinical data and CT images of 207 cases (216 lesions) with CT manifestations of an SSNs lung adenocarcinoma confirmed by surgery pathology were retrospectively analysed. The pathological results were divided into three groups, including atypical adenomatous hyperplasia (AAH)/adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC). Then, the quantitative and qualitative data of these nodules were compared and analysed.

RESULTS

The mean size, maximum diameter, mean CT value and maximum CT value of the nodules were significantly different among the three groups of AAH/AIS, MIA and IAC and were different between the paired groups (AAH/AIS and MIA or MIA and IAC) (P < 0.05). The critical values of the above indicators between AAH/AIS and MIA were 10.05 mm, 11.16 mm, - 548.00 HU and - 419.74 HU. The critical values of the above indicators between MIA and IAC were 14.42 mm, 16.48 mm, - 364.59 HU and - 16.98 HU. The binary logistic regression analysis of the features with the statistical significance showed that the regression model between AAH/AIS and MIA is logit(p) = - 0.93 + 0.216X + 0.004X. The regression model between MIA and IAC is logit(p) = - 1.242-1.428X(1) - 1.458X(1) + 1.146X(1) + 0.272X + 0.005X. The areas under the curve (AUC) obtained by plotting the receiver operating characteristic curve (ROC) using the regression probabilities of regression models I and II were 0.815 and 0.931.

CONCLUSIONS

Preoperative prediction of pathological classification of CT image features has important guiding value for clinical management. Correct diagnosis results can effectively improve the patient survival rate. Through comprehensive analysis of the CT features and qualitative data of SSNs, the diagnostic accuracy of SSNs can be effectively improved. The logistic regression model established in this study can better predict the pathological classification of SSNs lung adenocarcinoma on CT, and the predictive value is significantly higher than the independent use of each quantitative factor.

摘要

背景

探讨肺磨玻璃结节(SSNs)的CT特征及定量分析在预测肺腺癌病理分级中的价值。

方法

回顾性分析207例(216个病灶)经手术病理证实为SSNs型肺腺癌的临床资料及CT图像。病理结果分为三组,包括不典型腺瘤样增生(AAH)/原位腺癌(AIS)、微浸润腺癌(MIA)和浸润性腺癌(IAC)。然后,对这些结节的定量和定性数据进行比较和分析。

结果

AAH/AIS、MIA和IAC三组结节的平均大小、最大直径、平均CT值和最大CT值差异有统计学意义,且两两配对组间(AAH/AIS与MIA或MIA与IAC)也有差异(P<0.05)。AAH/AIS与MIA上述指标的临界值分别为10.05mm、11.16mm、-548.00HU和-419.74HU。MIA与IAC上述指标的临界值分别为14.42mm、16.48mm、-364.59HU和-16.98HU。对具有统计学意义的特征进行二元逻辑回归分析,结果显示AAH/AIS与MIA之间的回归模型为logit(p)= -0.93 + 0.216X + 0.004X。MIA与IAC之间的回归模型为logit(p)= -1.242 - 1.428X(1) - 1.458X(1) + 1.146X(1) + 0.272X + 0.005X。利用回归模型Ⅰ和Ⅱ的回归概率绘制受试者工作特征曲线(ROC)得到的曲线下面积(AUC)分别为0.815和0.931。

结论

术前对CT图像特征进行病理分类预测对临床治疗具有重要指导价值。正确的诊断结果可有效提高患者生存率。通过对SSNs的CT特征及定性数据进行综合分析,可有效提高SSNs的诊断准确性。本研究建立的逻辑回归模型能更好地预测SSNs型肺腺癌的CT病理分类,预测价值显著高于单独使用各定量因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验