Herz Christian, Vergnet Nicolas, Tian Sijie, Aly Abdullah H, Jolley Matthew A, Tran Nathanael, Arenas Gabriel, Lasso Andras, Schwartz Nadav, O'Neill Kathleen E, Yushkevich Paul A, Pouch Alison M
Children's Hospital of Philadelphia, Department of Anesthesiology and Critical Care Medicine, Philadelphia, Pennsylvania, United States.
University of Pennsylvania, Penn Image Computing and Science Laboratory, Department of Radiology, Philadelphia, Pennsylvania, United States.
J Med Imaging (Bellingham). 2024 May;11(3):036001. doi: 10.1117/1.JMI.11.3.036001. Epub 2024 May 14.
PURPOSE: Deformable medial modeling is an inverse skeletonization approach to representing anatomy in medical images, which can be used for statistical shape analysis and assessment of patient-specific anatomical features such as locally varying thickness. It involves deforming a pre-defined synthetic skeleton, or template, to anatomical structures of the same class. The lack of software for creating such skeletons has been a limitation to more widespread use of deformable medial modeling. Therefore, the objective of this work is to present an open-source user interface (UI) for the creation of synthetic skeletons for a range of medial modeling applications in medical imaging. APPROACH: A UI for interactive design of synthetic skeletons was implemented in 3D Slicer, an open-source medical image analysis application. The steps in synthetic skeleton design include importation and skeletonization of a 3D segmentation, followed by interactive 3D point placement and triangulation of the medial surface such that the desired branching configuration of the anatomical structure's medial axis is achieved. Synthetic skeleton design was evaluated in five clinical applications. Compatibility of the synthetic skeletons with open-source software for deformable medial modeling was tested, and representational accuracy of the deformed medial models was evaluated. RESULTS: Three users designed synthetic skeletons of anatomies with various topologies: the placenta, aortic root wall, mitral valve, cardiac ventricles, and the uterus. The skeletons were compatible with skeleton-first and boundary-first software for deformable medial modeling. The fitted medial models achieved good representational accuracy with respect to the 3D segmentations from which the synthetic skeletons were generated. CONCLUSIONS: Synthetic skeleton design has been a practical challenge in leveraging deformable medial modeling for new clinical applications. This work demonstrates an open-source UI for user-friendly design of synthetic skeletons for anatomies with a wide range of topologies.
目的:可变形中间模型是一种在医学图像中表示解剖结构的反向骨架化方法,可用于统计形状分析以及评估特定患者的解剖特征,如局部厚度变化。它涉及将预定义的合成骨架或模板变形为同一类别的解剖结构。缺乏用于创建此类骨架的软件一直是限制可变形中间模型更广泛应用的因素。因此,本研究的目的是提供一个开源用户界面(UI),用于为医学成像中的一系列中间模型应用创建合成骨架。 方法:在开源医学图像分析应用程序3D Slicer中实现了一个用于合成骨架交互式设计的UI。合成骨架设计的步骤包括导入3D分割并进行骨架化,随后进行交互式3D点放置和中间表面三角剖分,以实现解剖结构中间轴所需的分支配置。在五个临床应用中对合成骨架设计进行了评估。测试了合成骨架与用于可变形中间模型的开源软件的兼容性,并评估了变形中间模型的表示准确性。 结果:三名用户设计了具有不同拓扑结构的解剖结构的合成骨架:胎盘、主动脉根壁、二尖瓣、心室和子宫。这些骨架与用于可变形中间模型的基于骨架优先和基于边界优先的软件兼容。拟合的中间模型相对于生成合成骨架的3D分割具有良好的表示准确性。 结论:在将可变形中间模型应用于新的临床应用中,合成骨架设计一直是一个实际挑战。这项工作展示了一个开源UI,用于为具有广泛拓扑结构的解剖结构的合成骨架进行用户友好的设计。
J Med Imaging (Bellingham). 2024-5
Stat Atlases Comput Models Heart. 2015-1-1
IEEE Trans Med Imaging. 2006-12
Quant Imaging Med Surg. 2025-5-1
Med Image Anal. 2021-5
Inf Process Med Imaging. 2019-6
Shape Med Imaging (2018). 2018-9
Proc SPIE Int Soc Opt Eng. 2015
Front Neuroinform. 2014-2-20
Int J Comput Vis. 2003-11-1
Magn Reson Imaging. 2012-7-6