文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于成人脊柱畸形分类的基于视频的两阶段卷积神经网络。

Two-stage video-based convolutional neural networks for adult spinal deformity classification.

作者信息

Chen Kaixu, Asada Tomoyuki, Ienaga Naoto, Miura Kousei, Sakashita Kotaro, Sunami Takahiro, Kadone Hideki, Yamazaki Masashi, Kuroda Yoshihiro

机构信息

Degree Programs in Systems and Information Engineering, University of Tsukuba, Tsukuba, Japan.

Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.

出版信息

Front Neurosci. 2023 Dec 11;17:1278584. doi: 10.3389/fnins.2023.1278584. eCollection 2023.


DOI:10.3389/fnins.2023.1278584
PMID:38148942
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10750363/
Abstract

INTRODUCTION: Assessment of human gait posture can be clinically effective in diagnosing human gait deformities early in life. Currently, two methods-static and dynamic-are used to diagnose adult spinal deformity (ASD) and other spinal disorders. Full-spine lateral standing radiographs are used in the standard static method. However, this is a static assessment of joints in the standing position and does not include information on joint changes when the patient walks. Careful observation of long-distance walking can provide a dynamic assessment that reveals an uncompensated posture; however, this increases the workload of medical practitioners. A three-dimensional (3D) motion system is proposed for the dynamic method. Although the motion system successfully detected dynamic posture changes, access to the facilities was limited. Therefore, a diagnostic approach that is facility-independent, has low practice flow, and does not involve patient contact is required. METHODS: We focused on a video-based method to classify patients with spinal disorders either as ASD, or other forms of ASD. To achieve this goal, we present a video-based two-stage machine-learning method. In the first stage, deep learning methods are used to locate the patient and extract the area where the patient is located. In the second stage, a 3D CNN (convolutional neural network) device is used to capture spatial and temporal information (dynamic motion) from the extracted frames. Disease classification is performed by discerning posture and gait from the extracted frames. Model performance was assessed using the mean accuracy, F1 score, and area under the receiver operating characteristic curve (AUROC), with five-fold cross-validation. We also compared the final results with professional observations. RESULTS: Our experiments were conducted using a gait video dataset comprising 81 patients. The experimental results indicated that our method is effective for classifying ASD and other spinal disorders. The proposed method achieved a mean accuracy of 0.7553, an F1 score of 0.7063, and an AUROC score of 0.7864. Additionally, ablation experiments indicated the importance of the first stage (detection stage) and transfer learning of our proposed method. DISCUSSION: The observations from the two doctors were compared using the proposed method. The mean accuracies observed by the two doctors were 0.4815 and 0.5247, with AUROC scores of 0.5185 and 0.5463, respectively. We proved that the proposed method can achieve accurate and reliable medical testing results compared with doctors' observations using videos of 1 s duration. All our code, models, and results are available at https://github.com/ChenKaiXuSan/Walk_Video_PyTorch. The proposed framework provides a potential video-based method for improving the clinical diagnosis for ASD and non-ASD. This framework might, in turn, benefit both patients and clinicians to treat the disease quickly and directly and further reduce facility dependency and data-driven systems.

摘要

引言:评估人类步态姿势在临床早期诊断人类步态畸形方面可能具有重要作用。目前,有静态和动态两种方法用于诊断成人脊柱畸形(ASD)和其他脊柱疾病。标准的静态方法使用全脊柱站立位侧位X线片。然而,这是对站立位关节的静态评估,不包括患者行走时关节变化的信息。仔细观察远距离行走可提供动态评估,揭示未代偿的姿势;然而,这增加了医务人员的工作量。对于动态方法,有人提出了一种三维(3D)运动系统。尽管该运动系统成功检测到了动态姿势变化,但使用这些设备的机会有限。因此,需要一种独立于设备、操作流程简单且不涉及患者接触的诊断方法。 方法:我们专注于一种基于视频的方法,用于将脊柱疾病患者分类为ASD或其他形式的ASD。为实现这一目标,我们提出了一种基于视频的两阶段机器学习方法。在第一阶段,使用深度学习方法定位患者并提取患者所在区域。在第二阶段,使用3D卷积神经网络(CNN)设备从提取的帧中捕获空间和时间信息(动态运动)。通过从提取的帧中辨别姿势和步态来进行疾病分类。使用平均准确率、F1分数和受试者工作特征曲线下面积(AUROC),通过五折交叉验证评估模型性能。我们还将最终结果与专业观察结果进行了比较。 结果:我们使用包含81名患者的步态视频数据集进行了实验。实验结果表明,我们的方法在对ASD和其他脊柱疾病进行分类方面是有效的。所提出的方法平均准确率达到0.7553,F1分数为0.7063,AUROC分数为0.7864。此外,消融实验表明了我们所提出方法的第一阶段(检测阶段)和迁移学习的重要性。 讨论:使用所提出的方法对两位医生的观察结果进行了比较。两位医生观察到的平均准确率分别为0.4815和0.5247,AUROC分数分别为0.5185和0.5463。我们证明,与医生使用1秒时长视频的观察结果相比,所提出的方法能够获得准确可靠的医学检测结果。我们所有的代码、模型和结果都可在https://github.com/ChenKaiXuSan/Walk_Video_PyTorch获取。所提出的框架为改善ASD和非ASD的临床诊断提供了一种潜在的基于视频的方法。反过来,这个框架可能会使患者和临床医生都受益,能够快速直接地治疗疾病,并进一步减少对设备的依赖和数据驱动系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/a2ccbf10f6c0/fnins-17-1278584-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/9fce20246893/fnins-17-1278584-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/7be4fc7d34ac/fnins-17-1278584-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/e42f1e759dcb/fnins-17-1278584-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/283d302658ed/fnins-17-1278584-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/60a9abc5a618/fnins-17-1278584-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/e3f22c649332/fnins-17-1278584-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/7e112ebd39cc/fnins-17-1278584-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/a2ccbf10f6c0/fnins-17-1278584-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/9fce20246893/fnins-17-1278584-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/7be4fc7d34ac/fnins-17-1278584-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/e42f1e759dcb/fnins-17-1278584-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/283d302658ed/fnins-17-1278584-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/60a9abc5a618/fnins-17-1278584-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/e3f22c649332/fnins-17-1278584-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/7e112ebd39cc/fnins-17-1278584-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/10750363/a2ccbf10f6c0/fnins-17-1278584-g0008.jpg

相似文献

[1]
Two-stage video-based convolutional neural networks for adult spinal deformity classification.

Front Neurosci. 2023-12-11

[2]
Representative dynamic ranges of spinal alignment during gait in patients with mild and severe adult spinal deformities.

Spine J. 2021-3

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
Development of an unsupervised machine learning algorithm for the prognostication of walking ability in spinal cord injury patients.

Spine J. 2019-9-13

[5]
Wireless capsule endoscopy multiclass classification using three-dimensional deep convolutional neural network model.

Biomed Eng Online. 2023-12-15

[6]
Syntactic model-based human body 3D reconstruction and event classification via association based features mining and deep learning.

PeerJ Comput Sci. 2021-11-19

[7]
Thoracic kyphosis and pelvic anteversion in patients with adult spinal deformity increase while walking: analyses of dynamic alignment change using a three-dimensional gait motion analysis system.

Eur Spine J. 2020-4

[8]
Weakly supervised video-based cardiac detection for hypertensive cardiomyopathy.

BMC Med Imaging. 2023-10-19

[9]
[Precise application of Traditional Chinese Medicine in minimally-invasive techniques].

Zhongguo Gu Shang. 2018-6-25

[10]
Automated freezing of gait assessment with marker-based motion capture and multi-stage spatial-temporal graph convolutional neural networks.

J Neuroeng Rehabil. 2022-5-21

引用本文的文献

[1]
Bibliometric analysis of the application of artificial intelligence in orthopedic imaging.

Quant Imaging Med Surg. 2025-5-1

[2]
Alignment considerations in degenerative spinal conditions: A narrative review.

N Am Spine Soc J. 2024-10-1

本文引用的文献

[1]
The relationship between spinal alignment and activity of paravertebral muscle during gait in patients with adult spinal deformity: a retrospective study.

BMC Musculoskelet Disord. 2023-1-3

[2]
Can Proximal Junctional Kyphosis after Surgery for Adult Spinal Deformity Be Predicted by Preoperative Dynamic Sagittal Alignment Change with 3D Gait Analysis? A Case-Control Study.

J Clin Med. 2022-10-4

[3]
A Vision-Based Framework for Predicting Multiple Sclerosis and Parkinson's Disease Gait Dysfunctions-A Deep Learning Approach.

IEEE J Biomed Health Inform. 2023-1

[4]
Human Action Recognition From Various Data Modalities: A Review.

IEEE Trans Pattern Anal Mach Intell. 2023-3

[5]
Comparison of the postoperative changes in trunk and lower extremity muscle activities between patients with adult spinal deformity and age-matched controls using surface electromyography.

Spine Deform. 2022-1

[6]
Dynamic sagittal alignment and compensation strategies in adult spinal deformity during walking.

Spine J. 2021-7

[7]
Thoracic kyphosis and pelvic anteversion in patients with adult spinal deformity increase while walking: analyses of dynamic alignment change using a three-dimensional gait motion analysis system.

Eur Spine J. 2020-4

[8]
OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields.

IEEE Trans Pattern Anal Mach Intell. 2021-1

[9]
Visualization of walking speed variation-induced synchronized dynamic changes in lower limb joint angles and activity of trunk and lower limb muscles with a newly developed gait analysis system.

J Orthop Surg (Hong Kong). 2018

[10]
Successful detection of postoperative improvement of dynamic sagittal balance with a newly developed three-dimensional gait motion analysis system in a patient with iatrogenic flatback syndrome: A case report.

J Clin Neurosci. 2018-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索