Aebischer Kathrin, Becker Lea Marie, Schanda Paul, Ernst Matthias
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
Magn Reson (Gott). 2024 Jun 11;5(1):69-86. doi: 10.5194/mr-5-69-2024. eCollection 2024.
Dynamic processes in molecules can occur on a wide range of timescales, and it is important to understand which timescales of motion contribute to different parameters used in dynamics measurements. For spin relaxation, this can easily be understood from the sampling frequencies of the spectral-density function by different relaxation-rate constants. In addition to data from relaxation measurements, determining dynamically averaged anisotropic interactions in magic-angle spinning (MAS) solid-state NMR allows for better quantification of the amplitude of molecular motion. For partially averaged anisotropic interactions, the relevant timescales of motion are not so clearly defined. Whether the averaging depends on the experimental methods (e.g., pulse sequences) or conditions (e.g., MAS frequency, magnitude of anisotropic interaction, radio-frequency field amplitudes) is not fully understood. To investigate these questions, we performed numerical simulations of dynamic systems based on the stochastic Liouville equation using several experiments for recoupling the dipolar coupling, chemical-shift anisotropy or quadrupolar coupling. As described in the literature, the transition between slow motion, where parameters characterizing the anisotropic interaction are not averaged, and fast motion, where the tensors are averaged leading to a scaled anisotropic quantity, occurs over a window of motional rate constants that depends mainly on the strength of the interaction. This transition region can span 2 orders of magnitude in exchange-rate constants (typically in the microsecond range) but depends only marginally on the employed recoupling scheme or sample spinning frequency. The transition region often coincides with a fast relaxation of coherences, making precise quantitative measurements difficult. Residual couplings in off-magic-angle experiments, however, average over longer timescales of motion. While in principle one may gain information on the timescales of motion from the transition area, extracting such information is hampered by low signal-to-noise ratio in experimental spectra due to fast relaxation that occurs in the same region.
分子中的动态过程可以在很宽的时间尺度范围内发生,了解哪些运动时间尺度对动力学测量中使用的不同参数有贡献非常重要。对于自旋弛豫,这可以通过不同弛豫速率常数对光谱密度函数的采样频率很容易地理解。除了弛豫测量的数据外,在魔角旋转(MAS)固态核磁共振中确定动态平均各向异性相互作用有助于更好地量化分子运动的幅度。对于部分平均的各向异性相互作用,相关的运动时间尺度并没有那么明确的定义。平均过程是否取决于实验方法(例如脉冲序列)或条件(例如MAS频率、各向异性相互作用的大小、射频场幅度)尚未完全理解。为了研究这些问题,我们基于随机刘维尔方程对动态系统进行了数值模拟,使用了几种用于重新耦合偶极耦合、化学位移各向异性或四极耦合的实验。如文献中所述,在表征各向异性相互作用的参数未被平均的慢运动和张量被平均导致一个缩放后的各向异性量的快运动之间的转变,发生在一个主要取决于相互作用强度的运动速率常数窗口内。这个转变区域在交换速率常数上可以跨越2个数量级(通常在微秒范围内),但仅略微取决于所采用的重新耦合方案或样品旋转频率。转变区域通常与相干性的快速弛豫相吻合,使得精确的定量测量变得困难。然而,非魔角实验中的残余耦合在更长的运动时间尺度上进行平均。虽然原则上可以从转变区域获得关于运动时间尺度的信息,但由于在同一区域发生的快速弛豫,实验光谱中的低信噪比阻碍了此类信息的提取。