Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States.
J Phys Chem B. 2018 Oct 11;122(40):9302-9313. doi: 10.1021/acs.jpcb.8b06878. Epub 2018 Sep 27.
Nanometer-range distances are important for restraining the three-dimensional structure and oligomeric assembly of proteins and other biological molecules. Solid-state NMR determination of protein structures typically utilizes C-C and C-N distance restraints, which can only be measured up to ∼7 Å because of the low gyromagnetic ratios of these nuclear spins. To extend the distance reach of NMR, one can harvest the power of F, whose large gyromagnetic ratio in principle allows distances up to 2 nm to be measured. However, F possesses large chemical shift anisotropies (CSAs) as well as large isotropic chemical shift dispersions, which pose challenges to dipolar coupling measurements. Here, we demonstrate F-F distance measurements at high magnetic fields under fast magic-angle spinning (MAS) using radiofrequency-driven dipolar recoupling (RFDR). We show that F-F cross-peaks for distances up to 1 nm can be readily observed in two-dimensional F-F correlation spectra using less than 5 ms of RFDR mixing. This efficient F-F dipolar recoupling is achieved using practically accessible MAS frequencies of 15-55 kHz, moderate F radio frequency field strengths, and no H decoupling. Experiments and simulations show that the fastest polarization transfer for aromatic fluorines with the highest distance accuracy is achieved using either fast MAS (e.g., 60 kHz) with large pulse duty cycles (>50%) or slow MAS with strong F pulses. Fast MAS considerably reduces relaxation losses during the RFDR π-pulse train, making finite-pulse RFDR under fast-MAS the method of choice. Under intermediate MAS frequencies (25-40 kHz) and intermediate pulse duty cycles (15-30%), the F CSA tensor orientation has a quantifiable effect on the polarization transfer rate; thus, the RFDR buildup curves encode both distance and orientation information. At fast MAS, the impact of CSA orientation is minimized, allowing pure distance restraints to be extracted. We further investigate how relayed transfer and dipolar truncation in multifluorine environments affect polarization transfer. This fast-MAS F RFDR approach is complementary to F spin diffusion for distance measurements and will be the method of choice under high-field fast-MAS conditions that are increasingly important for protein structure determination by solid-state NMR.
纳米级距离对于抑制蛋白质和其他生物分子的三维结构和寡聚组装非常重要。固态 NMR 测定蛋白质结构通常利用 C-C 和 C-N 距离约束,由于这些核自旋的磁旋比低,这些约束只能测量到约 7 Å。为了扩展 NMR 的距离范围,可以利用 F 的能力,F 的大磁旋比原则上允许测量距离达 2 nm。然而,F 具有较大的化学位移各向异性(CSA)和较大的各向同性化学位移展宽,这对偶极耦合测量提出了挑战。在这里,我们在快速魔角旋转(MAS)下高磁场中展示了 F-F 距离的射频驱动偶极重聚(RFDR)测量。我们表明,在二维 F-F 相关谱中,使用少于 5 ms 的 RFDR 混合,可以轻松观察到距离高达 1nm 的 F-F 交叉峰。通过使用 15-55 kHz 的实际可访问 MAS 频率、中等的 F 射频场强度和没有 H 去耦,可以实现这种高效的 F-F 偶极重聚。实验和模拟表明,对于具有最高距离精度的芳香氟,使用具有大脉冲占空比(>50%)的快速 MAS(例如 60 kHz)或强 F 脉冲的缓慢 MAS 可实现最快的极化转移。快速 MAS 大大减少了 RFDR π-脉冲串期间的弛豫损耗,使得在快速-MAS 下进行有限脉冲 RFDR 成为首选方法。在中间 MAS 频率(25-40 kHz)和中间脉冲占空比(15-30%)下,F CSA 张量方向对极化转移速率有可量化的影响;因此,RFDR 建立曲线编码距离和方向信息。在快速 MAS 下,CSA 方向的影响最小化,允许提取纯距离约束。我们进一步研究了多氟环境中的中继转移和偶极截断如何影响极化转移。这种快速 MAS F RFDR 方法与 F 自旋扩散互补,用于距离测量,并且在越来越重要的高场快速 MAS 条件下是首选方法,对于固态 NMR 测定蛋白质结构至关重要。