Suppr超能文献

采用快速魔角旋转射频驱动 F-F 偶极重聚 NMR 技术测定长程距离。

Determination of Long-Range Distances by Fast Magic-Angle-Spinning Radiofrequency-Driven F-F Dipolar Recoupling NMR.

机构信息

Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States.

出版信息

J Phys Chem B. 2018 Oct 11;122(40):9302-9313. doi: 10.1021/acs.jpcb.8b06878. Epub 2018 Sep 27.

Abstract

Nanometer-range distances are important for restraining the three-dimensional structure and oligomeric assembly of proteins and other biological molecules. Solid-state NMR determination of protein structures typically utilizes C-C and C-N distance restraints, which can only be measured up to ∼7 Å because of the low gyromagnetic ratios of these nuclear spins. To extend the distance reach of NMR, one can harvest the power of F, whose large gyromagnetic ratio in principle allows distances up to 2 nm to be measured. However, F possesses large chemical shift anisotropies (CSAs) as well as large isotropic chemical shift dispersions, which pose challenges to dipolar coupling measurements. Here, we demonstrate F-F distance measurements at high magnetic fields under fast magic-angle spinning (MAS) using radiofrequency-driven dipolar recoupling (RFDR). We show that F-F cross-peaks for distances up to 1 nm can be readily observed in two-dimensional F-F correlation spectra using less than 5 ms of RFDR mixing. This efficient F-F dipolar recoupling is achieved using practically accessible MAS frequencies of 15-55 kHz, moderate F radio frequency field strengths, and no H decoupling. Experiments and simulations show that the fastest polarization transfer for aromatic fluorines with the highest distance accuracy is achieved using either fast MAS (e.g., 60 kHz) with large pulse duty cycles (>50%) or slow MAS with strong F pulses. Fast MAS considerably reduces relaxation losses during the RFDR π-pulse train, making finite-pulse RFDR under fast-MAS the method of choice. Under intermediate MAS frequencies (25-40 kHz) and intermediate pulse duty cycles (15-30%), the F CSA tensor orientation has a quantifiable effect on the polarization transfer rate; thus, the RFDR buildup curves encode both distance and orientation information. At fast MAS, the impact of CSA orientation is minimized, allowing pure distance restraints to be extracted. We further investigate how relayed transfer and dipolar truncation in multifluorine environments affect polarization transfer. This fast-MAS F RFDR approach is complementary to F spin diffusion for distance measurements and will be the method of choice under high-field fast-MAS conditions that are increasingly important for protein structure determination by solid-state NMR.

摘要

纳米级距离对于抑制蛋白质和其他生物分子的三维结构和寡聚组装非常重要。固态 NMR 测定蛋白质结构通常利用 C-C 和 C-N 距离约束,由于这些核自旋的磁旋比低,这些约束只能测量到约 7 Å。为了扩展 NMR 的距离范围,可以利用 F 的能力,F 的大磁旋比原则上允许测量距离达 2 nm。然而,F 具有较大的化学位移各向异性(CSA)和较大的各向同性化学位移展宽,这对偶极耦合测量提出了挑战。在这里,我们在快速魔角旋转(MAS)下高磁场中展示了 F-F 距离的射频驱动偶极重聚(RFDR)测量。我们表明,在二维 F-F 相关谱中,使用少于 5 ms 的 RFDR 混合,可以轻松观察到距离高达 1nm 的 F-F 交叉峰。通过使用 15-55 kHz 的实际可访问 MAS 频率、中等的 F 射频场强度和没有 H 去耦,可以实现这种高效的 F-F 偶极重聚。实验和模拟表明,对于具有最高距离精度的芳香氟,使用具有大脉冲占空比(>50%)的快速 MAS(例如 60 kHz)或强 F 脉冲的缓慢 MAS 可实现最快的极化转移。快速 MAS 大大减少了 RFDR π-脉冲串期间的弛豫损耗,使得在快速-MAS 下进行有限脉冲 RFDR 成为首选方法。在中间 MAS 频率(25-40 kHz)和中间脉冲占空比(15-30%)下,F CSA 张量方向对极化转移速率有可量化的影响;因此,RFDR 建立曲线编码距离和方向信息。在快速 MAS 下,CSA 方向的影响最小化,允许提取纯距离约束。我们进一步研究了多氟环境中的中继转移和偶极截断如何影响极化转移。这种快速 MAS F RFDR 方法与 F 自旋扩散互补,用于距离测量,并且在越来越重要的高场快速 MAS 条件下是首选方法,对于固态 NMR 测定蛋白质结构至关重要。

相似文献

1
Determination of Long-Range Distances by Fast Magic-Angle-Spinning Radiofrequency-Driven F-F Dipolar Recoupling NMR.
J Phys Chem B. 2018 Oct 11;122(40):9302-9313. doi: 10.1021/acs.jpcb.8b06878. Epub 2018 Sep 27.
2
Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments.
J Magn Reson. 2015 Mar;252:55-66. doi: 10.1016/j.jmr.2014.12.010. Epub 2015 Jan 6.
5
Measurement of Accurate Interfluorine Distances in Crystalline Organic Solids: A High-Frequency Magic Angle Spinning NMR Approach.
J Phys Chem B. 2019 Dec 19;123(50):10680-10690. doi: 10.1021/acs.jpcb.9b08919. Epub 2019 Dec 10.
6
Finite-pulse radio frequency driven recoupling with phase cycling for 2D (1)H/(1)H correlation at ultrafast MAS frequencies.
J Magn Reson. 2014 Jun;243:25-32. doi: 10.1016/j.jmr.2014.03.004. Epub 2014 Mar 20.
7
Fast Magic-Angle-Spinning F Spin Exchange NMR for Determining Nanometer F-F Distances in Proteins and Pharmaceutical Compounds.
J Phys Chem B. 2018 Mar 22;122(11):2900-2911. doi: 10.1021/acs.jpcb.8b00310. Epub 2018 Mar 13.
8
Recent progress in dipolar recoupling techniques under fast MAS in solid-state NMR spectroscopy.
Solid State Nucl Magn Reson. 2021 Apr;112:101711. doi: 10.1016/j.ssnmr.2020.101711. Epub 2021 Jan 11.

引用本文的文献

1
Binding Sites of a PET Ligand in Tau Fibrils with the Alzheimer's Disease Fold from F and C Solid-State NMR.
Biochemistry. 2025 Apr 1;64(7):1624-1635. doi: 10.1021/acs.biochem.5c00016. Epub 2025 Mar 11.
2
Solid-State NMR of Virus Membrane Proteins.
Acc Chem Res. 2025 Mar 18;58(6):847-860. doi: 10.1021/acs.accounts.4c00800. Epub 2025 Feb 28.
5
Structural characterization of E22G Aβ fibrils H detected MAS NMR.
Phys Chem Chem Phys. 2024 May 22;26(20):14664-14674. doi: 10.1039/d4cp00553h.
6
Heteronuclear and homonuclear radio-frequency-driven recoupling.
Magn Reson (Gott). 2021 May 28;2(1):343-353. doi: 10.5194/mr-2-343-2021. eCollection 2021.
7
Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications.
Chem Rev. 2023 Feb 8;123(3):918-988. doi: 10.1021/acs.chemrev.2c00197. Epub 2022 Dec 21.
8
F fast MAS (60-111 kHz) dipolar and scalar based correlation spectroscopy of organic molecules and pharmaceutical formulations.
Solid State Nucl Magn Reson. 2022 Dec;122:101831. doi: 10.1016/j.ssnmr.2022.101831. Epub 2022 Sep 23.
9
Solid-State NMR F-H-N Correlation Experiments for Resonance Assignment and Distance Measurements of Multifluorinated Proteins.
J Phys Chem A. 2022 Oct 6;126(39):7021-7032. doi: 10.1021/acs.jpca.2c05154. Epub 2022 Sep 23.
10
Clustering of tetrameric influenza M2 peptides in lipid bilayers investigated by F solid-state NMR.
Biochim Biophys Acta Biomembr. 2022 Jul 1;1864(7):183909. doi: 10.1016/j.bbamem.2022.183909. Epub 2022 Mar 8.

本文引用的文献

1
Rapid measurement of long-range distances in proteins by multidimensional C-F REDOR NMR under fast magic-angle spinning.
J Biomol NMR. 2018 May;71(1):31-43. doi: 10.1007/s10858-018-0187-0. Epub 2018 May 21.
3
Structure and Dynamics of Membrane Proteins from Solid-State NMR.
Annu Rev Biophys. 2018 May 20;47:201-222. doi: 10.1146/annurev-biophys-070816-033712. Epub 2018 Mar 2.
4
Fast Magic-Angle-Spinning F Spin Exchange NMR for Determining Nanometer F-F Distances in Proteins and Pharmaceutical Compounds.
J Phys Chem B. 2018 Mar 22;122(11):2900-2911. doi: 10.1021/acs.jpcb.8b00310. Epub 2018 Mar 13.
5
Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR.
Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):12946-12951. doi: 10.1073/pnas.1715127114. Epub 2017 Nov 20.
6
Zinc-binding structure of a catalytic amyloid from solid-state NMR.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6191-6196. doi: 10.1073/pnas.1706179114. Epub 2017 May 31.
7
(19)F-modified proteins and (19)F-containing ligands as tools in solution NMR studies of protein interactions.
Methods Enzymol. 2015;565:67-95. doi: 10.1016/bs.mie.2015.05.014. Epub 2015 Jun 16.
8
(19)F Paramagnetic Relaxation Enhancement: A Valuable Tool for Distance Measurements in Proteins.
Angew Chem Int Ed Engl. 2016 Jan 4;55(1):150-4. doi: 10.1002/anie.201508464. Epub 2015 Oct 29.
9
High-resolution proton-detected NMR of proteins at very fast MAS.
J Magn Reson. 2015 Apr;253:36-49. doi: 10.1016/j.jmr.2015.01.003.
10
Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
J Am Chem Soc. 2014 Sep 3;136(35):12489-97. doi: 10.1021/ja507382j. Epub 2014 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验