Suppr超能文献

通过固态核磁共振准确测定生物分子中的运动幅度

Accurate Determination of Motional Amplitudes in Biomolecules by Solid-State NMR.

作者信息

Chevelkov Veniamin, Lange Sascha, Sawczyc Henry, Lange Adam

机构信息

Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125Berlin, Germany.

Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115Berlin, Germany.

出版信息

ACS Phys Chem Au. 2023 Jan 4;3(2):199-206. doi: 10.1021/acsphyschemau.2c00053. eCollection 2023 Mar 22.

Abstract

Protein dynamics are an intrinsically important factor when considering a protein's biological function. Understanding these motions is often limited through the use of static structure determination methods, namely, X-ray crystallography and cryo-EM. Molecular simulations have allowed for the prediction of global and local motions of proteins from these static structures. Nevertheless, determining local dynamics at residue-specific resolution through direct measurement remains crucial. Solid-state nuclear magnetic resonance (NMR) is a powerful tool for studying dynamics in rigid or membrane-bound biomolecules without prior structural knowledge with the help of relaxation parameters such as and . However, these provide only a combined result of amplitude and correlation times in the nanosecond-millisecond frequency range. Thus, direct and independent determination of the amplitude of motions might considerably improve the accuracy of dynamics studies. In an ideal situation, the use of cross-polarization would be the optimal method for measuring the dipolar couplings between chemically bound heterologous nuclei. This would unambiguously provide the amplitude of motion per residue. In practice, however, the inhomogeneity of the applied radio-frequency fields across the sample leads to significant errors. Here, we present a novel method to eliminate this issue through including the radio-frequency distribution map in the analysis. This allows for direct and accurate measurement of residue-specific amplitudes of motion. Our approach has been applied to the cytoskeletal protein BacA in filamentous form, as well as to the intramembrane protease GlpG in lipid bilayers.

摘要

在考虑蛋白质的生物学功能时,蛋白质动力学是一个本质上很重要的因素。通过使用静态结构测定方法,即X射线晶体学和冷冻电镜,对这些运动的理解往往受到限制。分子模拟能够从这些静态结构预测蛋白质的全局和局部运动。然而,通过直接测量以残基特异性分辨率确定局部动力学仍然至关重要。固态核磁共振(NMR)是一种强大的工具,可在没有先验结构知识的情况下,借助诸如 和 等弛豫参数研究刚性或膜结合生物分子中的动力学。然而,这些仅提供了纳秒至毫秒频率范围内振幅和相关时间的综合结果。因此,直接且独立地确定运动振幅可能会显著提高动力学研究的准确性。在理想情况下,使用交叉极化将是测量化学键合的异源核之间偶极耦合的最佳方法。这将明确提供每个残基的运动振幅。然而,在实际中,样品上施加的射频场的不均匀性会导致显著误差。在此,我们提出一种新方法,通过在分析中纳入射频分布图来消除这个问题。这使得能够直接且准确地测量残基特异性运动振幅。我们的方法已应用于丝状形式的细胞骨架蛋白BacA以及脂质双层中的膜内蛋白酶GlpG。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac03/10037497/9daf1e6ba875/pg2c00053_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验