Suppr超能文献

影响晚期胃癌新辅助治疗后病理反应的因素。

Factors influencing pathological response after neoadjuvant therapy for advanced gastric cancer.

作者信息

Wang Yuanyuan, Li Xiaoxia, Huang Jing, Wu Nianqiu, Tang Chenglu

机构信息

Department of Digestive System, The Fifth Hospital of Wuhan Wuhan 430050, Hubei, China.

出版信息

Am J Transl Res. 2025 Apr 15;17(4):2907-2915. doi: 10.62347/SKZE1345. eCollection 2025.

Abstract

OBJECTIVE

To identify the factors influencing pathological responses after neoadjuvant therapy in advanced gastric cancer and to construct an effective prediction model for an improved response.

METHODS

Clinical data from 100 patients with advanced gastric cancer who received neoadjuvant therapy at The Fifth Hospital of Wuhan from January 2020 to December 2023 were retrospectively analyzed. Basic data, laboratory test results, and other patient information were collected. Univariate and multivariate logistic regression were used to analyze the factors influencing good disease recovery after neoadjuvant therapy. Based on the results of multi-factor analysis, a nomogram risk prediction model was constructed, and its effectiveness was validated. The model's discriminatory power was assessed using the receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC), while its fit was evaluated using a calibration curve. The model's consistency was assessed using the Hosmer-Lemeshow (HL) test.

RESULTS

Among the 100 patients, 22 (22%) had a good pathological response. Multivariate analysis showed that tumor differentiation, carcinoembryonic antigen (CEA), longest tumor diameter, and cN stage were significant factors influencing the pathological response of patients after neoadjuvant therapy. Based on the above indicators, a nomogram prediction model was constructed, with the following formula: Logit (P) = -1.653 + 1.562 × (tumor differentiation degree) + 1.925 × (CEA) + 1.620 × (longest tumor diameter) + 1.483 × (cN stage). The AUCs of the training set and the test set were 0.884 (95% CI: 0.778-0.990) and 0.861 (95% CI: 0.709-1.000), respectively. The HL test showed good fit (χ = 4.939, P = 0.764). The calibration curve demonstrated that the predicted values closely matched the observed values.

CONCLUSION

Tumor differentiation, CEA, longest tumor diameter, and cN stage are significant factors influencing the pathological response to neoadjuvant therapy in advanced gastric cancer. The prediction model developed based on these factors demonstrates good predictive performance and may aid in clinical decision-making.

摘要

目的

确定影响晚期胃癌新辅助治疗后病理反应的因素,并构建一个有效的预测模型以改善反应。

方法

回顾性分析2020年1月至2023年12月在武汉市第五医院接受新辅助治疗的100例晚期胃癌患者的临床资料。收集基本数据、实验室检查结果及其他患者信息。采用单因素和多因素逻辑回归分析影响新辅助治疗后疾病良好恢复的因素。基于多因素分析结果,构建列线图风险预测模型并验证其有效性。使用受试者工作特征曲线(ROC)和ROC曲线下面积(AUC)评估模型的辨别力,使用校准曲线评估模型的拟合度。使用Hosmer-Lemeshow(HL)检验评估模型的一致性。

结果

100例患者中,22例(22%)有良好的病理反应。多因素分析显示,肿瘤分化程度、癌胚抗原(CEA)、肿瘤最长径和cN分期是影响晚期胃癌患者新辅助治疗后病理反应的重要因素。基于上述指标构建列线图预测模型,公式如下:Logit(P)=-1.653 + 1.562×(肿瘤分化程度)+ 1.925×(CEA)+ 1.620×(肿瘤最长径)+ 1.483×(cN分期)。训练集和测试集的AUC分别为0.884(95%CI:0.778 - 0.990)和0.861(95%CI:0.709 - 1.000)。HL检验显示拟合良好(χ = 4.939,P = 0.764)。校准曲线表明预测值与观察值密切匹配。

结论

肿瘤分化程度、CEA、肿瘤最长径和cN分期是影响晚期胃癌新辅助治疗病理反应的重要因素。基于这些因素建立的预测模型具有良好的预测性能,可能有助于临床决策。

相似文献

本文引用的文献

8
Role of Adjuvant Radiotherapy in Gastric Cancer.辅助放疗在胃癌中的作用。
J Gastric Cancer. 2023 Jan;23(1):194-206. doi: 10.5230/jgc.2023.23.e1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验