Suppr超能文献

基于术前炎症标志物的伴神经侵犯胃癌预测模型的建立与验证

Establishment and validation of a prediction model for gastric cancer with perineural invasion based on preoperative inflammatory markers.

作者信息

Jiang Pan, Zheng Lijun, Yang Yining, Mo Dongping

机构信息

Department of Clinical Laboratory, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.

Department of Clinical Laboratory, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China.

出版信息

Transl Cancer Res. 2024 Oct 31;13(10):5381-5394. doi: 10.21037/tcr-24-481. Epub 2024 Oct 12.

Abstract

BACKGROUND

Gastric cancer (GC) is a prevalent malignant tumor of the digestive system, characterized by a poor prognosis and high recurrence rate. Perineural invasion (PNI), the neoplastic infiltration of nerves, is a significant predictor of survival outcome in GC. Accurate preoperative identification of PNI could facilitate patient stratification and optimal preoperative treatment. We therefore established and validated a preoperative risk assessment model for GC patients with PNI.

METHODS

We collected data from 1,195 patients who underwent surgical resection at our hospital between October 2020 and December 2023, with PNI confirmed by pathological examination. We gathered laboratory data, including blood cell count, blood type, coagulation index, biochemical indexes, and tumor markers. Eligible patients were randomly divided into a training set and a testing set at a ratio of 7:3. The important risk factors of PNI were evaluated by random forest package in RStudio. Receiver operating characteristic-area under the curve (ROC-AUC) analysis was used to evaluate the discriminatory ability of the factors for PNI. Univariate and multivariate logistic regression analyses were utilized to verity independent risk factors for patients with PNI, and the logistic regression model and nomogram were constructed based on the results. Calibration curve and decision curve analysis (DCA) were conducted to assess the predictive model. Finally, we verified the prediction equation model using the testing set.

RESULTS

In the training set, 416 GC patients were pathologically diagnosed with PNI. The top 5 important risk factors for PNI were identified as carcinoembryonic antigen (CEA), fibrinogen-to-lymphocyte ratio (FLR), D-dimer, platelet-to-lymphocyte ratio (PLR), and carbohydrate antigen 19-9 (CA19-9), with optimal cut-off values of 3.89 ng/mL, 2.08, 0.24 mg/L, 122.37, and 14.85 U/mL, respectively. Multivariate logistic regression analysis confirmed that CEA, FLR, D-dimer, PLR, CA19-9, and CA72-4 as independent risk factors for PNI (P<0.05). We formulated the following predictive equation: Logit(P) = -1.211 + 0.695 × CEA + 0.546 × FLR + 0.686 × D-dimer + 0.653 × PLR + 0.515 × CA19-9 + 0.518 × CA72-4 (χ=105.675, P<0.001). The model demonstrated an ROC-AUC value of 0.719 [95% confidence interval (CI): 0.681-0.757] in the training set, with a sensitivity of 68.51% and a specificity of 67.60%. The ROC-AUC value was 0.791 (95% CI: 0.750-0.831) in the testing set (sensitivity: 69.57%, specificity: 56.41%). Calibration curve and DCA confirmed that the model has good discrimination and accuracy.

CONCLUSIONS

We successfully established and validated a prediction model for GC patients with PNI based on hematological indicators, hoping that this model can provide an adjunctive tool for predicting PNI in clinical work.

摘要

背景

胃癌(GC)是消化系统中一种常见的恶性肿瘤,其预后较差且复发率高。神经周围侵犯(PNI),即肿瘤对神经的浸润,是胃癌生存结局的重要预测指标。术前准确识别PNI有助于患者分层及优化术前治疗。因此,我们建立并验证了一种针对伴有PNI的GC患者的术前风险评估模型。

方法

我们收集了2020年10月至2023年12月期间在我院接受手术切除且经病理检查确诊为PNI的1195例患者的数据。我们收集了实验室数据,包括血细胞计数、血型、凝血指标、生化指标和肿瘤标志物。符合条件的患者按7:3的比例随机分为训练集和测试集。通过RStudio中的随机森林软件包评估PNI的重要危险因素。采用受试者操作特征曲线下面积(ROC-AUC)分析评估各因素对PNI的鉴别能力。利用单因素和多因素逻辑回归分析验证PNI患者的独立危险因素,并根据结果构建逻辑回归模型和列线图。进行校准曲线和决策曲线分析(DCA)以评估预测模型。最后,我们使用测试集验证了预测方程模型。

结果

在训练集中,416例GC患者经病理诊断为PNI。PNI的前5个重要危险因素被确定为癌胚抗原(CEA)、纤维蛋白原与淋巴细胞比值(FLR)、D-二聚体、血小板与淋巴细胞比值(PLR)和糖类抗原19-9(CA19-9),最佳截断值分别为3.89 ng/mL、2.08、0.24 mg/L、122.37和14.85 U/mL。多因素逻辑回归分析证实,CEA、FLR、D-二聚体、PLR、CA19-9和CA72-4是PNI的独立危险因素(P<0.05)。我们制定了以下预测方程:Logit(P)= -1.211 + 0.695×CEA + 0.546×FLR + 0.686×D-二聚体 + 0.653×PLR + 0.515×CA19-9 + 0.518×CA72-4(χ=105.675,P<0.001)。该模型在训练集中的ROC-AUC值为0.719[95%置信区间(CI):0.681 - 0.757],灵敏度为68.51%,特异度为67.60%。在测试集中,ROC-AUC值为0.791(95%CI:0.750 - 0.831)(灵敏度:69.57%,特异度:56.41%)。校准曲线和DCA证实该模型具有良好的鉴别能力和准确性。

结论

我们成功建立并验证了一种基于血液学指标的针对伴有PNI的GC患者的预测模型,希望该模型能为临床工作中预测PNI提供辅助工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e5a/11543023/d3be922b2c9a/tcr-13-10-5381-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验