Suppr超能文献

联合评估胎盘生长因子、子宫动脉搏动指数和平均动脉压以预测子痫前期。

Combined assessment of placental growth factor, uterine artery pulsation index, and mean arterial pressure for predicting preeclampsia.

作者信息

Wu Xiaozhi, Xu Zhaoyu

机构信息

Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi) Zunyi 563000, Guizhou, China.

出版信息

Am J Transl Res. 2025 Apr 15;17(4):3074-3084. doi: 10.62347/JHZE8553. eCollection 2025.

Abstract

OBJECTIVE

To evaluate the clinical significance of combined detection of placental growth factor (PLGF), uterine artery pulse index (UTPI), and mean arterial pressure (MAP) in predicting preeclampsia (PE).

METHODS

A total of 332 pregnant women who underwent regular prenatal check-ups at The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi) from January 2022 to December 2023 were retrospectively included in this study. Medical histories and laboratory examination data were collected. The participants were divided into a PE group and a normal group based on the occurrence of PE. Clinical data, including MAP, UTPI, and PLGF were recorded between 11 and 13 weeks of pregnancy. A multivariate logistic regression analysis was performed with a significance level of P<0.05 to construct a predictive model for PE. The diagnostic efficacy of the combined MAP + UTPI + PLGF model for early pregnancy PE was assessed using ROC curves. In addition, 182 pregnant women who underwent regular prenatal check-ups in our hospital between February 1, 2023, and December 31, 2024, were selected for external verification.

RESULTS

Multivariate logistic regression analysis identified age, body mass index (BMI), pregnancy associated plasma protein-A (PAPP-A), MAP, UTPI, and PLGF as independent predictors of early pregnancy PE (all P<0.05). The AUC values for age, BMI, PAPP-A, MAP, UTPI, and PLGF were 0.660, 0.669, 0.749, 0.869, 0.781, and 0.943, respectively. The AUC of the combined MAP + UTPI + PLGF model was 0.990 (95% CI: 0.938-0.998), with specificity and sensitivity values of 83.98% and 98.80% respectively. Internal validation showed a mean absolute error (MAE) of 0.012, and the consistency index was 0.99 (95% CI: 0.983-0.997). The AUC for external validation of the prediction model was 0.975 (95% CI 0.955-0.995, P<0.001). Bootstrap analysis (1000 repetitions) using the Hosmer-Lemeshow test showed a good model fit (χ=4.039, P=0.854), with the slope of the calibration curve close to 1.

CONCLUSION

Age, BMI, PAPP-A, MAP, UTPI, and PLGF were all effective predictors for early PE. Furthermore, the combined detection of high-risk factors (MAP, UTPI, PLGF) has a high predictive value for PE early in pregnancy.

摘要

目的

评估联合检测胎盘生长因子(PLGF)、子宫动脉搏动指数(UTPI)和平均动脉压(MAP)在预测子痫前期(PE)中的临床意义。

方法

回顾性纳入2022年1月至2023年12月在遵义医科大学第三附属医院(遵义市第一人民医院)进行定期产前检查的332例孕妇。收集病史和实验室检查数据。根据是否发生PE将参与者分为PE组和正常组。在妊娠11至13周记录临床数据,包括MAP、UTPI和PLGF。进行多因素logistic回归分析,显著性水平为P<0.05,以构建PE的预测模型。使用ROC曲线评估联合MAP + UTPI + PLGF模型对早孕期PE的诊断效能。此外,选取2023年2月1日至2024年12月31日在我院进行定期产前检查的182例孕妇进行外部验证。

结果

多因素logistic回归分析确定年龄、体重指数(BMI)、妊娠相关血浆蛋白A(PAPP-A)、MAP、UTPI和PLGF为早孕期PE的独立预测因素(均P<0.05)。年龄、BMI、PAPP-A、MAP、UTPI和PLGF的AUC值分别为0.660、0.669、0.749、0.869、0.781和0.943。联合MAP + UTPI + PLGF模型的AUC为0.990(95%CI:0.938 - 0.998),特异性和敏感性值分别为83.98%和98.80%。内部验证显示平均绝对误差(MAE)为0.012,一致性指数为0.99(95%CI:0.983 - 0.997)。预测模型外部验证的AUC为0.975(95%CI 0.955 - 0.995,P<0.001)。使用Hosmer-Lemeshow检验的Bootstrap分析(1000次重复)显示模型拟合良好(χ=4.039,P=0.854),校准曲线斜率接近1。

结论

年龄、BMI、PAPP-A、MAP、UTPI和PLGF均为早发PE的有效预测因素。此外,联合检测高危因素(MAP、UTPI、PLGF)对早孕期PE具有较高的预测价值。

相似文献

3
Clinical Application of Multi-Index Combined Risk Assessment in Early Pregnancy for Screening of Preeclampsia.
Evid Based Complement Alternat Med. 2022 Sep 27;2022:5089442. doi: 10.1155/2022/5089442. eCollection 2022.
4
Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 30-34 weeks' gestation.
Am J Obstet Gynecol. 2016 Jul;215(1):87.e1-87.e17. doi: 10.1016/j.ajog.2016.02.016. Epub 2016 Feb 12.
5
Screening for pre-eclampsia at 11-13 weeks' gestation: use of pregnancy-associated plasma protein-A, placental growth factor or both.
Ultrasound Obstet Gynecol. 2020 Sep;56(3):400-407. doi: 10.1002/uog.22093. Epub 2020 Aug 5.
6
Pre-pregnancy body mass index combined with peripheral blood PLGF, DCN, LDH, and UA in a risk prediction model for pre-eclampsia.
Front Endocrinol (Lausanne). 2024 Jan 8;14:1297731. doi: 10.3389/fendo.2023.1297731. eCollection 2023.
7
Routine first-trimester combined screening for pre-eclampsia: pregnancy-associated plasma protein-A or placental growth factor?
Ultrasound Obstet Gynecol. 2021 Oct;58(4):540-545. doi: 10.1002/uog.23669. Epub 2021 Sep 13.
10
Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19-24 weeks' gestation.
Am J Obstet Gynecol. 2016 May;214(5):619.e1-619.e17. doi: 10.1016/j.ajog.2015.11.016. Epub 2015 Nov 25.

本文引用的文献

3
Biomarkers for Early Prediction and Management of Preeclampsia: A Comprehensive Review.
Med Sci Monit. 2024 May 23;30:e944104. doi: 10.12659/MSM.944104.
4
Blood pressure cutoffs at 11-13 weeks of gestation and risk of preeclampsia.
Am J Obstet Gynecol. 2025 Feb;232(2):214.e1-214.e10. doi: 10.1016/j.ajog.2024.04.032. Epub 2024 Apr 30.
5
A longitudinal and cross-sectional study of placental circulation between normal and placental insufficiency pregnancies.
Placenta. 2024 Apr;149:29-36. doi: 10.1016/j.placenta.2024.03.001. Epub 2024 Mar 11.
6
Angiogenic Biomarkers in Preeclampsia.
Obstet Gynecol. 2024 Apr 1;143(4):515-523. doi: 10.1097/AOG.0000000000005532. Epub 2024 Feb 13.
7
Incidence of Preeclampsia and Cesarean Section Rate According to the Robson Classification.
Cureus. 2023 Dec 2;15(12):e49845. doi: 10.7759/cureus.49845. eCollection 2023 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验