Suppr超能文献

通过深度学习乳腺癌患者女性骨骼结构增强的自动骨扫描指数测量系统的准确性

Accuracy of an Automated Bone Scan Index Measurement System Enhanced by Deep Learning of the Female Skeletal Structure in Patients with Breast Cancer.

作者信息

Fukai Shohei, Daisaki Hiromitsu, Yamashita Kosuke, Kuromori Issei, Motegi Kazuki, Umeda Takuro, Shimada Naoki, Takatsu Kazuaki, Terauchi Takashi, Koizumi Mitsuru

机构信息

Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550 Japan.

Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, Maebashi, Gunma 371-0052 Japan.

出版信息

Nucl Med Mol Imaging. 2025 Jun;59(3):185-193. doi: 10.1007/s13139-025-00905-5. Epub 2025 Jan 13.

Abstract

PURPOSE

VSBONE BSI (VSBONE), an automated bone scan index (BSI) measurement system was updated from version 2.1 (ver.2) to 3.0 (ver.3). VSBONE ver.3 incorporates deep learning of the skeletal structures of 957 new women, and it can be applied in patients with breast cancer. However, the performance of the updated VSBONE remains unclear. This study aimed to validate the diagnostic accuracy of the VSBONE system in patients with breast cancer.

METHODS

In total, 220 Japanese patients with breast cancer who underwent bone scintigraphy with single-photon emission computed tomography/computed tomography (SPECT/CT) were retrospectively analyzed. The patients were diagnosed with active bone metastases ( = 20) and non-bone metastases ( = 200) according to the physician's radiographic image interpretation. The patients were assessed using the VSBONE ver.2 and VSBONE ver.3, and the BSI findings were compared with the interpretation results by the physicians. The occurrence of segmentation errors, the association of BSI between VSBONE ver.2 and VSBONE ver.3, and the diagnostic accuracy of the systems were evaluated.

RESULTS

VSBONE ver.2 and VSBONE ver.3 had segmentation errors in four and two patients. Significant positive linear correlations were confirmed in both versions of the BSI ( = 0.92). The diagnostic accuracy was 54.1% in VSBOBE ver.2, and 80.5% in VSBONE ver.3  < 0.001), respectively.

CONCLUSION

The diagnostic accuracy of VSBONE was improved through deep learning of the female skeletal structures. The updated VSBONE ver.3 can be a reliable automated system for measuring BSI in patients with breast cancer.

摘要

目的

VSBONE BSI(VSBONE)是一种自动骨扫描指数(BSI)测量系统,已从2.1版(ver.2)更新到3.0版(ver.3)。VSBONE ver.3纳入了对957名新女性骨骼结构的深度学习,可应用于乳腺癌患者。然而,更新后的VSBONE性能尚不清楚。本研究旨在验证VSBONE系统在乳腺癌患者中的诊断准确性。

方法

回顾性分析了220例接受单光子发射计算机断层扫描/计算机断层扫描(SPECT/CT)骨闪烁显像的日本乳腺癌患者。根据医生对放射影像的解读,将患者诊断为有活动性骨转移(n = 20)和无骨转移(n = 200)。使用VSBONE ver.2和VSBONE ver.3对患者进行评估,并将BSI结果与医生的解读结果进行比较。评估了分割错误的发生率、VSBONE ver.2和VSBONE ver.3之间BSI的相关性以及系统的诊断准确性。

结果

VSBONE ver.2和VSBONE ver.3分别有4例和2例患者出现分割错误。两个版本的BSI均证实有显著的正线性相关性(r = 0.92)。VSBOBE ver.2的诊断准确性为54.1%,VSBONE ver.3的诊断准确性为80.5%(P < 0.001)。

结论

通过对女性骨骼结构的深度学习提高了VSBONE的诊断准确性。更新后的VSBONE ver.3可以成为一种可靠的自动系统,用于测量乳腺癌患者的BSI。

相似文献

5
Bisphosphonates for breast cancer.用于乳腺癌的双膦酸盐类药物。
Cochrane Database Syst Rev. 2005 Jul 20(3):CD003474. doi: 10.1002/14651858.CD003474.pub2.
6
Do Hounsfield Units From Intraoperative CT Scans Correlate With Preoperative Values?术中 CT 扫描的 Hounsfield 单位与术前值相关吗?
Clin Orthop Relat Res. 2024 Oct 1;482(10):1885-1892. doi: 10.1097/CORR.0000000000003122. Epub 2024 May 9.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验