Suppr超能文献

利用帕金森病体内电生理学评估脑深部电刺激计算建模方法

Evaluation of DBS computational modeling methodologies using in-vivo electrophysiology in Parkinson's disease.

作者信息

Borgheai Seyyed Bahram, Howell Bryan, Isbaine Faical, Noecker Angela M, Opri Enrico, Risk Benjamin B, McIntyre Cameron C, Miocinovic Svjetlana

机构信息

Department of Neurology, Emory University, Atlanta, GA.

Department of Biomedical Engineering, Duke University, Durham, NC.

出版信息

medRxiv. 2025 May 6:2025.05.05.25326314. doi: 10.1101/2025.05.05.25326314.

Abstract

Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease (PD) and other neuropsychiatric disorders, but its outcomes vary due to differences in patient selection, electrode placement, and programming. Optimizing DBS parameter settings requires postoperative adjustments through a trial-and-error process, which is complex and time-consuming. As such, researchers have been developing patient-specific computational models to help guide DBS programming. Despite growing interest in image-guided DBS technology, and recent adoption into clinical practice, the direct validation of the prediction accuracy remains limited. The objective of this study was to establish a comparative framework for validating the accuracy of various DBS computational modeling methodologies in predicting the activation of clinically relevant pathways using in vivo measurements from PD patients undergoing subthalamic (STN) DBS surgery. Our prior work assessed the accuracy of driving force (DF) models in native space by predicting activation of the corticospinal/bulbar tract (CSBT) and cortico-subthalamic hyperdirect pathway (HDP) using very short- (<2 ms) and short-latency (2-4 ms) cortical evoked potentials (cEPs). In this study, we extended our previous work by comparing the accuracy of five computational modeling variations for predicting the activation of HDP and CSBT based on three key factors: modeling method (DF vs. Volume of Tissue Activated [VTA]), imaging space (native vs. normative), and anatomical representation (pathway vs. volume). The model performances were quantified using the coefficient of determination (R) between the cEP amplitudes and percent pathway activation or percent volume (structure) overlap. We compared model accuracy for 11 PD patients. The DF-Native-Pathway model was the most accurate method for quantitatively predicting experimental subcortical pathway activations. Additionally, our analysis showed that using normative brain space, instead of native (i.e., patient-specific) space, significantly diminished the accuracy of model predictions. Although the DF and VTA modeling methods exhibited comparable accuracy for the hyperdirect pathway, they diverged significantly in their predictions for the corticospinal tract. In conclusion, we believe that the choice of methodology should depend on the specific application and the required level of precision in clinical, surgical, or research settings. These findings offer valuable guidance for developing more accurate models, facilitating reliable DBS outcome predictions, and advancing both clinical practice and research.

摘要

深部脑刺激(DBS)是治疗帕金森病(PD)和其他神经精神疾病的有效方法,但其效果因患者选择、电极放置和编程的差异而有所不同。优化DBS参数设置需要通过反复试验的过程进行术后调整,这一过程复杂且耗时。因此,研究人员一直在开发针对患者的计算模型,以帮助指导DBS编程。尽管人们对图像引导的DBS技术兴趣日益浓厚,且该技术最近已应用于临床实践,但对预测准确性的直接验证仍然有限。本研究的目的是建立一个比较框架,以验证各种DBS计算建模方法在使用接受丘脑底核(STN)DBS手术的PD患者的体内测量数据预测临床相关通路激活方面的准确性。我们之前的工作通过使用非常短(<2毫秒)和短潜伏期(2-4毫秒)的皮质诱发电位(cEPs)预测皮质脊髓/延髓束(CSBT)和皮质-丘脑底核超直接通路(HDP)的激活,评估了原生空间中驱动力(DF)模型的准确性。在本研究中,我们通过比较基于三个关键因素预测HDP和CSBT激活的五种计算建模变体的准确性,扩展了我们之前的工作:建模方法(DF与组织激活体积[VTA])、成像空间(原生与标准)和解剖表示(通路与体积)。使用cEP振幅与通路激活百分比或体积(结构)重叠百分比之间的决定系数(R)对模型性能进行量化。我们比较了11名PD患者的模型准确性。DF-原生-通路模型是定量预测实验性皮质下通路激活的最准确方法。此外,我们的分析表明,使用标准脑空间而非原生(即患者特异性)空间会显著降低模型预测的准确性。尽管DF和VTA建模方法在超直接通路上表现出相当的准确性,但它们对皮质脊髓束的预测存在显著差异。总之,我们认为方法的选择应取决于具体应用以及临床、手术或研究环境中所需的精确程度。这些发现为开发更准确的模型、促进可靠的DBS结果预测以及推动临床实践和研究提供了有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c3c/12083610/fcf7d930a127/nihpp-2025.05.05.25326314v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验