Suppr超能文献

全基因组关联研究中使用GhostKnockoffs进行稳健推断。

Robust inference with GhostKnockoffs in genome-wide association studies.

作者信息

Qi Xinran, Belloy Michael E, Gu Jiaqi, Liu Xiaoxia, Tang Hua, He Zihuai

机构信息

Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.

Department of Neurology, Washington University in Saint Louis, Saint Louis, MO 63108, USA.

出版信息

Res Sq. 2025 May 5:rs.3.rs-6396196. doi: 10.21203/rs.3.rs-6396196/v1.

Abstract

Genome-wide association studies (GWASs) have been extensively adopted to depict the underlying genetic architecture of complex traits. Recent studies have demonstrated that for feature selection in GWASs data, in addition to controlling the familywise error rate (FWER), the false discovery rate (FDR) serves as an appealing alternative for detecting small effect loci associated with polygenic traits. However, the presence of correlations among genetic variants makes direct application of usual FDR-controlling procedures to marginal association tests ineffective. The knockoffs-based methods have shown guarantee in FDR control in GWASs, but their statistical validity and effectiveness in studies with related individuals remain unexplored. In this paper, we propose a knockoff-based approach by integrating recently proposed GhostKnockoffs and state-of-the-art marginal association tests. We show that GhostKnockoffs, which only requires GWAS Z-scores as input, is robust to arbitrary relatedness structure as long as the input Z-scores are derived from valid generalized linear mixed models. Therefore, it can be flexibly applied on top of the standard GWASs pipeline that accounts for relatedness to enhance the discovery of small effect loci. This robustness also generalizes GhostKnockoffs to other GWASs settings, such as the meta-analysis of multiple overlapping studies and studies based on association test statistics deviated from score tests. We demonstrate the method's performance using simulation studies and a meta-analysis of nine European ancestral genome-wide association studies and whole exome/genome sequencing studies for the Alzheimer's disease.

摘要

全基因组关联研究(GWAS)已被广泛用于描绘复杂性状的潜在遗传结构。最近的研究表明,对于GWAS数据中的特征选择,除了控制家族性错误率(FWER)外,错误发现率(FDR)是检测与多基因性状相关的小效应位点的一个有吸引力的替代方法。然而,遗传变异之间的相关性使得将常规的FDR控制程序直接应用于边际关联检验无效。基于仿冒品的方法已在GWAS的FDR控制中得到保证,但其在相关个体研究中的统计有效性和有效性仍未得到探索。在本文中,我们通过整合最近提出的GhostKnockoffs和最先进的边际关联检验,提出了一种基于仿冒品的方法。我们表明,GhostKnockoffs只需要GWAS Z分数作为输入,只要输入的Z分数来自有效的广义线性混合模型,它对任意的相关性结构都具有鲁棒性。因此,它可以灵活地应用于考虑相关性的标准GWAS流程之上,以增强对小效应位点的发现。这种鲁棒性也将GhostKnockoffs推广到其他GWAS设置,如多个重叠研究的荟萃分析以及基于偏离得分检验的关联检验统计量的研究。我们使用模拟研究以及对九项欧洲祖先全基因组关联研究和阿尔茨海默病的全外显子组/基因组测序研究的荟萃分析来证明该方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2424/12083671/f1adc731242d/nihpp-rs6396196v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验