Suppr超能文献

仅从汇总统计中进行控制变量选择?一种通过幽灵仿样和惩罚回归的解决方案。

Controlled Variable Selection from Summary Statistics Only? A Solution via GhostKnockoffs and Penalized Regression.

作者信息

Chen Zhaomeng, He Zihuai, Chu Benjamin B, Gu Jiaqi, Morrison Tim, Sabatti Chiara, Candès Emmanuel

机构信息

Department of Statistics, Stanford University.

Department of Neurology and Neurological Sciences, Stanford University.

出版信息

ArXiv. 2024 Feb 20:arXiv:2402.12724v1.

Abstract

Identifying which variables do influence a response while controlling false positives pervades statistics and data science. In this paper, we consider a scenario in which we only have access to summary statistics, such as the values of marginal empirical correlations between each dependent variable of potential interest and the response. This situation may arise due to privacy concerns, e.g., to avoid the release of sensitive genetic information. We extend GhostKnockoffs He et al. [2022] and introduce variable selection methods based on penalized regression achieving false discovery rate (FDR) control. We report empirical results in extensive simulation studies, demonstrating enhanced performance over previous work. We also apply our methods to genome-wide association studies of Alzheimer's disease, and evidence a significant improvement in power.

摘要

在控制误报的同时确定哪些变量确实会影响响应,这在统计学和数据科学中普遍存在。在本文中,我们考虑一种情况,即我们只能获取汇总统计信息,例如每个潜在感兴趣的因变量与响应之间的边际经验相关性值。由于隐私问题,例如为了避免泄露敏感的遗传信息,可能会出现这种情况。我们扩展了GhostKnockoffs(He等人,[2022]),并引入了基于惩罚回归的变量选择方法,以实现错误发现率(FDR)控制。我们在广泛的模拟研究中报告了实证结果,表明与先前的工作相比性能有所提高。我们还将我们的方法应用于阿尔茨海默病的全基因组关联研究,并证明在功效方面有显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0931/10925382/19dc03e3e007/nihpp-2402.12724v1-f0007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验