Suppr超能文献

鱼群中的自我重组与信息传递

Self-reorganization and Information Transfer in Massive Schools of Fish.

作者信息

Hang Haotian, Huang Chenchen, Barnett Alex, Kanso Eva

机构信息

Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089.

Center for Computational Mathematics, Flatiron Institute, New York City, NY 10010.

出版信息

ArXiv. 2025 May 9:arXiv:2505.05822v1.

Abstract

The remarkable cohesion and coordination observed in moving animal groups and their collective responsiveness to threats are thought to be mediated by scale-free correlations, where changes in the behavior of one animal influence others in the group, regardless of the distance between them. But are these features independent of group size? Here, we investigate group cohesiveness and collective responsiveness in computational models of massive schools of fish of up to 50,000 individuals. We show that as the number of swimmers increases, flow interactions destabilize the school, creating clusters that constantly fragment, disperse, and regroup, similar to their biological counterparts. We calculate the spatial correlation and speed of information propagation in these dynamic clusters. Spatial correlations in cohesive and polarized clusters are indeed scale free, much like in natural animal groups, but fragmentation events are preceded by a decrease in correlation length, thus diminishing the group's collective responsiveness, leaving it more vulnerable to predation events. Importantly, in groups undergoing collective turns, the information about the change in direction propagates linearly in time among group members, thanks to the non-reciprocal nature of the visual interactions between individuals. Merging speeds up the transfer of information within each cluster by several fold, while fragmentation slows it down. Our findings suggest that flow interactions may have played an important role in group size regulation, behavioral adaptations, and dispersion in living animal groups.

摘要

在移动的动物群体中观察到的显著凝聚力和协调性,以及它们对威胁的集体反应能力,被认为是由无标度相关性介导的,即一只动物行为的变化会影响群体中的其他动物,而不管它们之间的距离如何。但这些特征是否与群体大小无关呢?在这里,我们在多达50000个个体的大规模鱼群计算模型中研究群体凝聚力和集体反应能力。我们发现,随着游泳者数量的增加,水流相互作用会使鱼群不稳定,形成不断分裂、分散和重新聚集的集群,类似于它们的生物学对应物。我们计算了这些动态集群中的空间相关性和信息传播速度。凝聚力强且极化的集群中的空间相关性确实是无标度的,很像在自然动物群体中,但在分裂事件之前,相关长度会减小,从而降低群体的集体反应能力,使其更容易受到捕食事件的影响。重要的是,在进行集体转向的群体中,由于个体之间视觉相互作用的非互惠性质,方向变化的信息在群体成员之间随时间呈线性传播。合并会使每个集群内的信息传递速度加快几倍,而分裂则会使其减慢。我们的研究结果表明,水流相互作用可能在活体动物群体的群体大小调节、行为适应和分散中发挥了重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e55/12147559/5248c79bc6f6/nihpp-2505.05822v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验