Thapa Kundu, Mooney Madison, Ma Guorong, Cao Zhiqiang, Mason Gage T, Eedugurala Naresh, Jha Surabhi, Patton Derek L, Azoulay Jason D, Rondeau-Gagné Simon, Gu Xiaodan
School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States.
Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
Macromolecules. 2025 Apr 29;58(9):4780-4789. doi: 10.1021/acs.macromol.4c02778. eCollection 2025 May 13.
The significant differences in scattering cross sections between deuterium and protium are unique to neutron scattering techniques and have been a long-standing area of interest within the neutron scattering community. Researchers have explored selective deuteration to manipulate scattering contrast in soft matter systems, leading to the widespread use of deuterium labeling in materials development. As deuteration changes the atomic mass, it alters physical properties such as molecular volume, polarizability, and polarity, which in turn may affect noncovalent interactions and crystal ordering. Despite previous studies, there remains a limited understanding of how deuteration impacts donor-acceptor (DA) conjugated polymers. To address this, we synthesized deuterated DPP polymers and systematically investigated the effects of side-chain deuteration on their thermal stability, crystal packing, morphology, and optoelectronic properties. We found that deuteration increased the melting and crystallization temperatures of DPP polymers, although it did not significantly alter their morphology, molecular packing, or charge mobility. These properties were assessed by using atomic force microscopy (AFM), X-ray scattering, and thin-film transistor device measurements, respectively, for DPP polymers. Our work shows that deuterium labeling could be a powerful method for controlling scattering length density, enabling neutrons to study the structure and dynamics of conjugated polymers without impacting their electronic performance.
氘和氢之间散射截面的显著差异是中子散射技术所特有的,并且长期以来一直是中子散射领域关注的焦点。研究人员探索了选择性氘化以控制软物质系统中的散射对比度,这使得氘标记在材料开发中得到广泛应用。由于氘化改变了原子质量,它会改变诸如分子体积、极化率和极性等物理性质,进而可能影响非共价相互作用和晶体有序性。尽管之前有过研究,但对于氘化如何影响供体 - 受体(DA)共轭聚合物仍了解有限。为了解决这个问题,我们合成了氘化的DPP聚合物,并系统地研究了侧链氘化对其热稳定性、晶体堆积、形态和光电性能的影响。我们发现氘化提高了DPP聚合物的熔点和结晶温度,尽管它没有显著改变它们的形态、分子堆积或电荷迁移率。对于DPP聚合物,分别使用原子力显微镜(AFM)、X射线散射和薄膜晶体管器件测量来评估这些性质。我们的工作表明,氘标记可能是控制散射长度密度的一种有效方法,使中子能够研究共轭聚合物的结构和动力学,而不影响其电子性能。