Chakrabarty Nivedita, Pai Prathamesh, Sahu Arpita, Chowdhury Oindrila Roy, Kandalgaonkar Pashmina, Dadlani Tapish, Menon Munita, Ankathi Suman Kumar
Department of Radiodiagnosis, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, Maharashtra, India.
Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel Mumbai, Maharashtra, India.
J Med Imaging Radiat Oncol. 2025 Jun;69(4):452-461. doi: 10.1111/1754-9485.13865. Epub 2025 May 19.
Fine needle aspiration (FNA) from parotid tumour is inadequate and nondiagnostic in 8% and FNA/biopsy from deep lobe is technically challenging; hence, our first objective was to evaluate MRI findings which best predict the benign and malignant nature of parotid tumour. Our second objective was to develop MRI signatures for parotid tumour histopathologies including grades of carcinoma, to help in decision making regarding elective neck dissection.
Two head and neck radiologists retrospectively evaluated and developed signatures of common benign and malignant parotid tumours using morphology and signal intensity-related variables for 98 patients on MRI available in PACS from 01 January 2016 to 26 December 2022. T1 weighted image (WI), T2WI, short tau inversion recovery, diffusion WI/apparent diffusion coefficient and postcontrast T1WI sequences were evaluated. The developed MRI signatures were then validated by a blinded third radiologist.
Sensitivity, specificity, accuracy, positive and negative predictive values using MRI signatures were 92.31%, 100%, 94.23%, 100% and 81.25%, respectively, for benign and malignant nature of parotid tumours with a highly significant p-value (< 1e-04). Developed MRI signatures also showed high statistical performance and significant p-value for parotid tumour histopathologies and grades of mucoepidermoid carcinoma (MEC). T2 signal intensity and enhancement patterns can help identify low-grade MEC, impacting management decisions regarding elective neck dissection.
MRI can predict the benign and malignant nature, parotid tumour histopathologies and grades of MEC when typical signatures are present, impacting management decisions.
腮腺肿瘤细针穿刺活检(FNA)的诊断率为8%,存在不足且无法确诊,而深叶FNA/活检在技术上具有挑战性;因此,我们的首要目标是评估能最佳预测腮腺肿瘤良恶性的MRI表现。我们的第二个目标是为腮腺肿瘤组织病理学(包括癌的分级)建立MRI特征,以帮助在择期颈清扫术的决策制定中提供参考。
两位头颈放射科医生回顾性评估并利用形态学和信号强度相关变量,为2016年1月1日至2022年12月26日PACS系统中98例患者的MRI上常见的良性和恶性腮腺肿瘤建立特征。对T1加权像(WI)、T2WI、短tau反转恢复序列、扩散WI/表观扩散系数和增强后T1WI序列进行评估。然后由第三位不知情的放射科医生对所建立的MRI特征进行验证。
对于腮腺肿瘤的良恶性,使用MRI特征的敏感性、特异性、准确性、阳性和阴性预测值分别为92.31%、100%、94.23%、100%和81.25%,p值高度显著(<1e - 04)。所建立的MRI特征对于腮腺肿瘤组织病理学和黏液表皮样癌(MEC)分级也显示出较高的统计学效能和显著的p值。T2信号强度和强化模式有助于识别低级别MEC,从而影响关于择期颈清扫术的管理决策。
当存在典型特征时,MRI能够预测腮腺肿瘤的良恶性、组织病理学及MEC分级,进而影响管理决策。