Suppr超能文献

影响腮腺肿瘤治疗决策的MRI特征:一项影像学与病理学相关性的回顾性研究

MRI Signatures of Parotid Tumours Impacting Management Decisions: A Retrospective Study With Radiology and Pathology Correlation.

作者信息

Chakrabarty Nivedita, Pai Prathamesh, Sahu Arpita, Chowdhury Oindrila Roy, Kandalgaonkar Pashmina, Dadlani Tapish, Menon Munita, Ankathi Suman Kumar

机构信息

Department of Radiodiagnosis, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, Maharashtra, India.

Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel Mumbai, Maharashtra, India.

出版信息

J Med Imaging Radiat Oncol. 2025 Jun;69(4):452-461. doi: 10.1111/1754-9485.13865. Epub 2025 May 19.

Abstract

INTRODUCTION

Fine needle aspiration (FNA) from parotid tumour is inadequate and nondiagnostic in 8% and FNA/biopsy from deep lobe is technically challenging; hence, our first objective was to evaluate MRI findings which best predict the benign and malignant nature of parotid tumour. Our second objective was to develop MRI signatures for parotid tumour histopathologies including grades of carcinoma, to help in decision making regarding elective neck dissection.

METHODS

Two head and neck radiologists retrospectively evaluated and developed signatures of common benign and malignant parotid tumours using morphology and signal intensity-related variables for 98 patients on MRI available in PACS from 01 January 2016 to 26 December 2022. T1 weighted image (WI), T2WI, short tau inversion recovery, diffusion WI/apparent diffusion coefficient and postcontrast T1WI sequences were evaluated. The developed MRI signatures were then validated by a blinded third radiologist.

RESULTS

Sensitivity, specificity, accuracy, positive and negative predictive values using MRI signatures were 92.31%, 100%, 94.23%, 100% and 81.25%, respectively, for benign and malignant nature of parotid tumours with a highly significant p-value (< 1e-04). Developed MRI signatures also showed high statistical performance and significant p-value for parotid tumour histopathologies and grades of mucoepidermoid carcinoma (MEC). T2 signal intensity and enhancement patterns can help identify low-grade MEC, impacting management decisions regarding elective neck dissection.

CONCLUSIONS

MRI can predict the benign and malignant nature, parotid tumour histopathologies and grades of MEC when typical signatures are present, impacting management decisions.

摘要

引言

腮腺肿瘤细针穿刺活检(FNA)的诊断率为8%,存在不足且无法确诊,而深叶FNA/活检在技术上具有挑战性;因此,我们的首要目标是评估能最佳预测腮腺肿瘤良恶性的MRI表现。我们的第二个目标是为腮腺肿瘤组织病理学(包括癌的分级)建立MRI特征,以帮助在择期颈清扫术的决策制定中提供参考。

方法

两位头颈放射科医生回顾性评估并利用形态学和信号强度相关变量,为2016年1月1日至2022年12月26日PACS系统中98例患者的MRI上常见的良性和恶性腮腺肿瘤建立特征。对T1加权像(WI)、T2WI、短tau反转恢复序列、扩散WI/表观扩散系数和增强后T1WI序列进行评估。然后由第三位不知情的放射科医生对所建立的MRI特征进行验证。

结果

对于腮腺肿瘤的良恶性,使用MRI特征的敏感性、特异性、准确性、阳性和阴性预测值分别为92.31%、100%、94.23%、100%和81.25%,p值高度显著(<1e - 04)。所建立的MRI特征对于腮腺肿瘤组织病理学和黏液表皮样癌(MEC)分级也显示出较高的统计学效能和显著的p值。T2信号强度和强化模式有助于识别低级别MEC,从而影响关于择期颈清扫术的管理决策。

结论

当存在典型特征时,MRI能够预测腮腺肿瘤的良恶性、组织病理学及MEC分级,进而影响管理决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a619/12175207/7bab19835fa3/ARA-69-452-g003.jpg

相似文献

1
MRI Signatures of Parotid Tumours Impacting Management Decisions: A Retrospective Study With Radiology and Pathology Correlation.
J Med Imaging Radiat Oncol. 2025 Jun;69(4):452-461. doi: 10.1111/1754-9485.13865. Epub 2025 May 19.
2
Deep learning for differential diagnosis of parotid tumors based on 2.5D magnetic resonance imaging.
Ann Med. 2025 Dec;57(1):2520401. doi: 10.1080/07853890.2025.2520401. Epub 2025 Jun 18.
4
Multiparametric MRI in Diagnosis of Parotid Gland Tumor: An Observational Study in 3-T MRI.
Indian J Radiol Imaging. 2024 Dec 17;35(3):402-410. doi: 10.1055/s-0044-1800861. eCollection 2025 Jul.
5
Deep learning detects retropharyngeal edema on MRI in patients with acute neck infections.
Eur Radiol Exp. 2025 Jun 19;9(1):60. doi: 10.1186/s41747-025-00599-6.
6
The added value of MRI in distinguishing malignant and benign ampullary strictures: a multicenter retrospective study.
Jpn J Radiol. 2025 Feb;43(2):225-235. doi: 10.1007/s11604-024-01664-7. Epub 2024 Sep 26.
7
Identifying Primary Sites of Spinal Metastases: Expert-Derived Features vs. ResNet50 Model Using Nonenhanced MRI.
J Magn Reson Imaging. 2025 Jul;62(1):176-186. doi: 10.1002/jmri.29720. Epub 2025 Jan 27.
8
Forensic Age Determination Using MRI Scans of the Ankle: Applying Two Classifications to Assess Ossification.
Rofo. 2025 Jul;197(7):791-804. doi: 10.1055/a-2379-8785. Epub 2024 Sep 5.

本文引用的文献

2
Magnetic resonance imaging of parotid gland tumors: a pictorial essay.
BMC Med Imaging. 2022 Nov 7;22(1):191. doi: 10.1186/s12880-022-00924-0.
3
4
Malignant tumours of the parotid gland: management of the neck (including the clinically negative neck) and a literature review.
Br J Oral Maxillofac Surg. 2021 Jul;59(6):665-671. doi: 10.1016/j.bjoms.2020.08.026. Epub 2020 Aug 27.
5
Management of Salivary Gland Malignancy: ASCO Guideline.
J Clin Oncol. 2021 Jun 10;39(17):1909-1941. doi: 10.1200/JCO.21.00449. Epub 2021 Apr 26.
6
Multiparametric Magnetic Resonance Imaging for the Diagnosis and Differential Diagnosis of Parotid Gland Tumors.
J Magn Reson Imaging. 2020 Jul;52(1):11-32. doi: 10.1002/jmri.27061. Epub 2020 Feb 17.
7
The diagnostic value of cytology in parotid Warthin's tumors: international multicenter series.
Head Neck. 2020 Mar;42(3):522-529. doi: 10.1002/hed.26032. Epub 2019 Nov 24.
8
Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging for Differentiation Between Parotid Neoplasms.
Can Assoc Radiol J. 2019 Aug;70(3):264-272. doi: 10.1016/j.carj.2018.10.010. Epub 2019 Mar 25.
9
State-of-the-Art Imaging of Salivary Gland Tumors.
Neuroimaging Clin N Am. 2018 May;28(2):303-317. doi: 10.1016/j.nic.2018.01.009.
10
MR imaging features of mammary analogue secretory carcinoma and acinic cell carcinoma of the salivary gland: a preliminary report.
Dentomaxillofac Radiol. 2018 Jul;47(5):20170218. doi: 10.1259/dmfr.20170218. Epub 2018 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验