文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用亲脂性膜染料PKH26标记细胞外囊泡期间的非特异性颗粒形成

Non-Specific Particle Formation During Extracellular Vesicle Labelling With the Lipophilic Membrane Dye PKH26.

作者信息

Haines Laurel A, Baeckler Alex A, Schofield Sophi J, Palmer Eric P, Guilliams Bradley F, Meyers Melinda A, Regan Daniel P

机构信息

Department of Microbiology, Immunology, & Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.

出版信息

J Extracell Vesicles. 2025 May;14(5):e70079. doi: 10.1002/jev2.70079.


DOI:10.1002/jev2.70079
PMID:40387660
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12087298/
Abstract

Current approaches for the fluorescent labelling of extracellular vesicles (EVs) have been reported to produce widely variable and controversial results, highlighting a significant need for validated, reproducible labelling methods to advance the field of EV research. Lipophilic membrane dyes are commonly used but have been shown to produce non-specific fluorescent particles that are indistinguishable from labelled EVs, confounding experimental results. We aimed to distinguish conditions that can either promote or reduce the formation of non-specific dye particles when using the prototypical lipophilic membrane dye PKH26. We optimised a labelling approach that minimises the production of non-specific dye particles by altering buffer conditions during staining and validated this method across cell-based and in vivo systems of EV biodistribution. To do this, we specifically isolated small EVs using ultrafiltration and size exclusion chromatography and validated sample purity and post-isolation processing steps. We then used single-EV spectral flow cytometry and transmission electron microscopy to investigate the impact of four different buffer conditions on PKH26 non-specific particle formation. We also determined the extent to which non-specific PKH26 particles were detectable in cell-based assays and in vivo within mouse lymph nodes using flow cytometry, immunofluorescence, and intravital imaging. By optimising buffer conditions to eliminate additional protein, we were able to minimise the formation of dye aggregates while maintaining efficient EV labelling, producing a much higher signal-to-noise ratio both in vitro and in vivo. We also demonstrate that failure to include proper vehicle controls can have significant implications on experimental results, leading to false positive data. This work emphasizes the importance of adequately benchmarking EV labelling approaches as it is essential for accurate evaluation of EV trafficking in physiologic and pathologic states.

摘要

据报道,目前用于细胞外囊泡(EV)荧光标记的方法产生的结果差异很大且存在争议,这突出表明迫切需要经过验证的、可重复的标记方法来推动EV研究领域的发展。亲脂性膜染料是常用的,但已被证明会产生与标记的EV难以区分的非特异性荧光颗粒,从而混淆实验结果。我们旨在区分在使用典型亲脂性膜染料PKH26时能够促进或减少非特异性染料颗粒形成的条件。我们优化了一种标记方法,通过在染色过程中改变缓冲条件来尽量减少非特异性染料颗粒的产生,并在基于细胞和体内的EV生物分布系统中验证了该方法。为此,我们使用超滤和尺寸排阻色谱法专门分离了小EV,并验证了样品纯度和分离后的处理步骤。然后,我们使用单EV光谱流式细胞术和透射电子显微镜来研究四种不同缓冲条件对PKH26非特异性颗粒形成的影响。我们还使用流式细胞术、免疫荧光和活体成像确定了在基于细胞的测定中以及在小鼠淋巴结体内可检测到非特异性PKH26颗粒的程度。通过优化缓冲条件以去除额外的蛋白质,我们能够在保持高效EV标记的同时尽量减少染料聚集体的形成,在体外和体内都产生了高得多的信噪比。我们还证明,不包括适当的载体对照可能会对实验结果产生重大影响,导致假阳性数据。这项工作强调了充分评估EV标记方法的重要性,因为这对于准确评估生理和病理状态下的EV运输至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/12087298/50db0d975661/JEV2-14-e70079-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/12087298/b7cc67a6103a/JEV2-14-e70079-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/12087298/328f70d5ddb8/JEV2-14-e70079-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/12087298/de194de484b3/JEV2-14-e70079-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/12087298/77f62c3c2384/JEV2-14-e70079-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/12087298/50db0d975661/JEV2-14-e70079-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/12087298/b7cc67a6103a/JEV2-14-e70079-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/12087298/328f70d5ddb8/JEV2-14-e70079-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/12087298/de194de484b3/JEV2-14-e70079-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/12087298/77f62c3c2384/JEV2-14-e70079-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/12087298/50db0d975661/JEV2-14-e70079-g001.jpg

相似文献

[1]
Non-Specific Particle Formation During Extracellular Vesicle Labelling With the Lipophilic Membrane Dye PKH26.

J Extracell Vesicles. 2025-5

[2]
Quantitative assessment of lipophilic membrane dye-based labelling of extracellular vesicles by nano-flow cytometry.

J Extracell Vesicles. 2023-8

[3]
Systematic Evaluation of PKH Labelling on Extracellular Vesicle Size by Nanoparticle Tracking Analysis.

Sci Rep. 2020-6-12

[4]
PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles.

Biochim Biophys Acta Biomembr. 2018-3-16

[5]
Confocal microscopy analysis reveals that only a small proportion of extracellular vesicles are successfully labelled with commonly utilised staining methods.

Sci Rep. 2022-1-7

[6]
Imaging of extracellular vesicles derived from human bone marrow mesenchymal stem cells using fluorescent and magnetic labels.

Int J Nanomedicine. 2018-3-19

[7]
Differential fluorescence nanoparticle tracking analysis for enumeration of the extracellular vesicle content in mixed particulate solutions.

Methods. 2020-5-1

[8]
Detection of the interactions of tumour derived extracellular vesicles with immune cells is dependent on EV-labelling methods.

J Extracell Vesicles. 2023-12

[9]
Imaging flow cytometry challenges the usefulness of classically used extracellular vesicle labeling dyes and qualifies the novel dye Exoria for the labeling of mesenchymal stromal cell-extracellular vesicle preparations.

Cytotherapy. 2022-6

[10]
New Lipophilic Fluorescent Dyes for Labeling Extracellular Vesicles: Characterization and Monitoring of Cellular Uptake.

Bioconjug Chem. 2021-4-21

本文引用的文献

[1]
Different storage and freezing protocols for extracellular vesicles: a systematic review.

Stem Cell Res Ther. 2024-11-26

[2]
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches.

J Extracell Vesicles. 2024-2

[3]
Exosome microRNA-22 inhibiting proliferation, migration and invasion through regulating Twist1/CADM1 axis in osteosarcoma.

Sci Rep. 2024-1-8

[4]
Quantitative assessment of lipophilic membrane dye-based labelling of extracellular vesicles by nano-flow cytometry.

J Extracell Vesicles. 2023-8

[5]
Improved exosome isolation methods from non-small lung cancer cells (NC1975) and their characterization using morphological and surface protein biomarker methods.

J Cancer Res Clin Oncol. 2023-8

[6]
CSF-derived extracellular vesicles from patients with Parkinson's disease induce symptoms and pathology.

Brain. 2023-1-5

[7]
Confocal microscopy analysis reveals that only a small proportion of extracellular vesicles are successfully labelled with commonly utilised staining methods.

Sci Rep. 2022-1-7

[8]
Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration.

Proc Natl Acad Sci U S A. 2021-10-19

[9]
Placental extracellular vesicles retain biological activity after short-term storage (14 days) at 4 °C or room temperature.

Placenta. 2021-11

[10]
Recent Advances in Exosome-Based Drug Delivery for Cancer Therapy.

Cancers (Basel). 2021-9-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索