Suppr超能文献

靶向层层纳米颗粒的刚性会影响消除半衰期、肿瘤积累和肿瘤穿透。

Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration.

机构信息

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2021 Oct 19;118(42). doi: 10.1073/pnas.2104826118.

Abstract

Nanoparticle (NP) stiffness has been shown to significantly impact circulation time and biodistribution in anticancer drug delivery. In particular, the relationship between particle stiffness and tumor accumulation and penetration in vivo is an important phenomenon to consider in optimizing NP-mediated tumor delivery. Layer-by-layer (LbL) NPs represent a promising class of multifunctional nanoscale drug delivery carriers. However, there has been no demonstration of the versatility of LbL systems in coating systems with different stiffnesses, and little is known about the potential role of LbL NP stiffness in modulating in vivo particle trafficking, although NP modulus has been recently studied for its impact on pharmacokinetics. LbL nanotechnology enables NPs to be functionalized with uniform coatings possessing molecular tumor-targeting properties, independent of the NP core stiffness. Here, we report that the stiffness of LbL NPs is directly influenced by the mechanical properties of its underlying liposomal core, enabling the modulation and optimization of LbL NP stiffness while preserving LbL NP outer layer tumor-targeting and stealth properties. We demonstrate that the stiffness of LbL NPs has a direct impact on NP pharmacokinetics, organ and tumor accumulation, and tumor penetration-with compliant LbL NPs having longer elimination half-life, higher tumor accumulation, and higher tumor penetration. Our findings underscore the importance of NP stiffness as a design parameter in enhancing the delivery of LbL NP formulations.

摘要

纳米颗粒 (NP) 的刚性已被证明会显著影响抗癌药物输送中的循环时间和生物分布。特别是,颗粒刚性与体内肿瘤积累和穿透的关系是优化 NP 介导的肿瘤输送中需要考虑的一个重要现象。层层 (LbL) NPs 是一类很有前途的多功能纳米级药物输送载体。然而,还没有证明 LbL 系统在具有不同刚性的涂层系统中的多功能性,并且对于 LbL NP 刚性在调节体内颗粒迁移中的潜在作用知之甚少,尽管 NP 模量最近因其对药代动力学的影响而被研究。LbL 纳米技术使 NPs 能够通过具有分子肿瘤靶向特性的均匀涂层进行功能化,而与 NP 核的刚性无关。在这里,我们报告说,LbL NPs 的刚性直接受到其底层脂质体核的机械性能的影响,从而能够在保持 LbL NP 外层肿瘤靶向和隐身特性的同时调节和优化 LbL NP 的刚性。我们证明了 LbL NPs 的刚性对 NP 药代动力学、器官和肿瘤积累以及肿瘤穿透有直接影响——顺应性 LbL NPs 的消除半衰期更长、肿瘤积累更高、肿瘤穿透更深。我们的研究结果强调了 NP 刚性作为增强 LbL NP 制剂递送的设计参数的重要性。

相似文献

2
Layer-by-Layer Polymer Functionalization Improves Nanoparticle Penetration and Glioblastoma Targeting in the Brain.
ACS Nano. 2023 Dec 12;17(23):24154-24169. doi: 10.1021/acsnano.3c09273. Epub 2023 Nov 22.
3
Surface Presentation of Hyaluronic Acid Modulates Nanoparticle-Cell Association.
Bioconjug Chem. 2022 Nov 16;33(11):2065-2075. doi: 10.1021/acs.bioconjchem.2c00412. Epub 2022 Oct 25.
4
Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires.
Acc Chem Res. 2008 Dec;41(12):1831-41. doi: 10.1021/ar8001377.
6
Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs.
Acta Biomater. 2014 Dec;10(12):5116-5127. doi: 10.1016/j.actbio.2014.08.021. Epub 2014 Aug 25.
8
Controlling in vivo stability and biodistribution in electrostatically assembled nanoparticles for systemic delivery.
Nano Lett. 2011 May 11;11(5):2096-103. doi: 10.1021/nl200636r. Epub 2011 Apr 27.
10
Sonication-assisted Layer-by-Layer self-assembly nanoparticles for resveratrol delivery.
Mater Sci Eng C Mater Biol Appl. 2019 Dec;105:110022. doi: 10.1016/j.msec.2019.110022. Epub 2019 Jul 29.

引用本文的文献

1
Advancing engineering design strategies for targeted cancer nanomedicine.
Nat Rev Cancer. 2025 Aug 1. doi: 10.1038/s41568-025-00847-2.
2
The Role of Nanoparticle Elasticity on Biological Hydrogel Penetration.
Pharmaceutics. 2025 Jun 9;17(6):760. doi: 10.3390/pharmaceutics17060760.
3
Targeted Drug Delivery to the Spleen and Its Implications for the Prevention and Treatment of Cancer.
Pharmaceutics. 2025 May 15;17(5):651. doi: 10.3390/pharmaceutics17050651.
5
Nanoparticle Targeting Strategies for Lipid and Polymer-Based Gene Delivery to Immune Cells In Vivo.
Small Sci. 2024 Jul 30;4(9):2400248. doi: 10.1002/smsc.202400248. eCollection 2024 Sep.
7
Probing the Role of Lipid Nanoparticle Elasticity on mRNA Delivery to the Placenta.
Nano Lett. 2025 Mar 26;25(12):4800-4808. doi: 10.1021/acs.nanolett.4c06241. Epub 2025 Mar 14.
8
"Therapies Through Gut:" Targeted Drug Delivery for Non-Gastrointestinal Diseases by Oral Administration.
Adv Healthc Mater. 2025 Jul;14(17):e2403162. doi: 10.1002/adhm.202403162. Epub 2025 Mar 3.
9
Emerging Elastic Micro-Nano Materials for Diagnosis and Treatment of Thrombosis.
Research (Wash D C). 2025 Feb 28;8:0614. doi: 10.34133/research.0614. eCollection 2025.
10
Charge-Stabilized Nanodiscs as a New Class of Lipid Nanoparticles.
Adv Mater. 2024 Dec;36(52):e2408307. doi: 10.1002/adma.202408307. Epub 2024 Nov 14.

本文引用的文献

1
Cancer Cell Coating Nanoparticles for Optimal Tumor-Specific Cytokine Delivery.
ACS Nano. 2020 Sep 22;14(9):11238-11253. doi: 10.1021/acsnano.0c03109. Epub 2020 Sep 5.
2
Nanoparticle elasticity regulates phagocytosis and cancer cell uptake.
Sci Adv. 2020 Apr 17;6(16):eaaz4316. doi: 10.1126/sciadv.aaz4316. eCollection 2020 Apr.
3
Tuning Nanoparticle Interactions with Ovarian Cancer through Layer-by-Layer Modification of Surface Chemistry.
ACS Nano. 2020 Feb 25;14(2):2224-2237. doi: 10.1021/acsnano.9b09213. Epub 2020 Feb 10.
4
Renal clearance of polymeric nanoparticles by mimicry of glycan surface of viruses.
Biomaterials. 2020 Feb;230:119643. doi: 10.1016/j.biomaterials.2019.119643. Epub 2019 Nov 23.
5
Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect.
Acta Pharm Sin B. 2019 Jul;9(4):858-870. doi: 10.1016/j.apsb.2019.02.010. Epub 2019 Mar 2.
6
Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery.
ACS Nano. 2019 Jul 23;13(7):7410-7424. doi: 10.1021/acsnano.9b03924. Epub 2019 Jul 11.
7
8
Elucidating the Influence of Tumor Presence on the Polymersome Circulation Time in Mice.
Pharmaceutics. 2019 May 20;11(5):241. doi: 10.3390/pharmaceutics11050241.
9
The softness of tumour-cell-derived microparticles regulates their drug-delivery efficiency.
Nat Biomed Eng. 2019 Sep;3(9):729-740. doi: 10.1038/s41551-019-0405-4. Epub 2019 May 20.
10
Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels.
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5362-5369. doi: 10.1073/pnas.1818924116. Epub 2019 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验