Suppr超能文献

用于有胰腺导管腺癌风险或疑似胰腺导管腺癌患者的两种血浆多代谢物特征验证(METAPAC):一项前瞻性、多中心、研究者设盲、富集设计的4期诊断性研究。

Validation of two plasma multimetabolite signatures for patients at risk of or with suspected pancreatic ductal adenocarcinoma (METAPAC): a prospective, multicentre, investigator-masked, enrichment design, phase 4 diagnostic study.

作者信息

Mahajan Ujjwal M, Oehrle Bettina, Goni Elisabetta, Strobel Oliver, Kaiser Jörg, Grützmann Robert, Werner Jens, Friess Helmut, Gress Thomas M, Seufferlein Thomas W, Uhl Waldemar, Will Uwe, Neoptolemos John P, Wittel Uwe A, Vornhülz Marlies, Sirtl Simon, Beyer Georg, Regel Ivonne, Boeck Stefan, Heinemann Volker, Frost Fabian, Steveling Antje, Völzke Henry, Petersmann Astrid, Nauck Matthias, Weber Eckhard, Kamlage Beate, Lerch Markus M, Mayerle Julia

机构信息

Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany; Bavarian Center for Cancer Research (BZKF), Munich, Germany; Comprehensive Cancer Center, Munich, Germany.

Department of General Surgery, University of Heidelberg, Heidelberg, Germany; Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria.

出版信息

Lancet Gastroenterol Hepatol. 2025 Jul;10(7):634-647. doi: 10.1016/S2468-1253(25)00056-1. Epub 2025 May 16.

Abstract

BACKGROUND

Earlier diagnosis of pancreatic ductal adenocarcinoma is key to improving overall survival in patients with this hard-to-treat cancer. We independently validated two previously identified plasma-based metabolic signatures for exclusion of pancreatic ductal adenocarcinoma in cohorts with an increased annual risk.

METHODS

The METAPAC study was a prospective, multicentre, investigator-masked, enrichment design, phase 4 trial done in 23 centres in Germany. Patients with pancreatic lesions identified by diagnostic imaging that required further diagnostic assessment were recruited and followed up for 24 months. Targeted quantitative plasma metabolite analysis was done on a liquid chromatography-tandem mass spectrometry platform. The improved metabolic (i-Metabolic) signature consisted of 12 analytes plus carbohydrate antigen (CA) 19-9, and the minimalistic metabolic (m-Metabolic) signature consisted of four analytes plus CA 19-9. The primary endpoint of the study was the exclusion of pancreatic ductal adenocarcinoma with an 85% specificity and the highest possible diagnostic accuracy. All statistical analyses were done per protocol. This study is registered with the German Clinical Trials Register (DRKS00010866).

FINDINGS

Between Sept 9, 2016, and April 8, 2022, 1370 patients with CT-identified pancreatic lesions necessitating further diagnostic assessment were screened, of whom 1129 patients (489 with pancreatic ductal adenocarcinoma, 640 controls) were included in the primary analysis (median age 67 years [IQR 58-75]; 556 [49%] female, 572 [51%] male). The control group consisted of high-risk individuals with acute pancreatitis (11 [1%] of 1129 participants), chronic pancreatitis (113 [10%]), intraductal papillary mucinous neoplasms (232 [21%]), cystic lesions other than intraductal papillary mucinous neoplasms (271 [24%]), and metastases of extrapancreatic origin (13 [1%]). The i-Metabolic signature detected pancreatic ductal adenocarcinoma with an area under the curve (AUC) of 0·846 (95% CI 0·842-0·849), specificity of 90·4% (89·8-91·1), sensitivity of 67·5% (66·9-68·0), and balanced accuracy of 80·5% (80·2-80·8), compared with CA 19-9 alone (AUC 0·799 [0·797-0·802], p<0·0001; specificity 79·1% [78·7-79·4]; sensitivity 81·8% [81·5-82·0]; balanced accuracy 80·6% [80·4-80·9]). The m-Metabolic signature detected pancreatic ductal adenocarcinoma with an AUC of 0·846 (95% CI 0·842-0·849; p<0·0001 vs CA 19-9 alone), specificity of 93·6% (93·1-94·0), sensitivity of 59·9% (59·3-60·4), and accuracy of 79·0% (78·8-79·2). In a population of 242 individuals with new-onset diabetes (three cases of incident pancreatic ductal adenocarcinoma), the m-Metabolic signature (without CA 19-9) significantly discriminated patients with pancreatic ductal adenocarcinoma from those without (p=0·038). AUC, specificity, and sensitivity remained constant after random bootstrapping for a prevalence of pancreatic ductal adenocarcinoma between 1% and 20%.

INTERPRETATION

Two plasma-based metabolic signatures showed significant improvement in performance compared with CA 19-9 alone in excluding pancreatic ductal adenocarcinoma in a prospective real-world cohort. These findings could offer a surveillance tool in patients with an annual risk of pancreatic ductal adenocarcinoma of 1% to reduce unnecessary invasive procedures and facilitate earlier detection of resectable disease.

FUNDING

Federal Ministry of Education and Research (BMBF, Germany).

摘要

背景

早期诊断胰腺导管腺癌是提高这种难治性癌症患者总体生存率的关键。我们在年风险增加的队列中独立验证了两种先前确定的基于血浆的代谢特征,用于排除胰腺导管腺癌。

方法

METAPAC研究是一项前瞻性、多中心、研究者设盲、富集设计的4期试验,在德国的23个中心进行。招募经诊断性成像发现有胰腺病变且需要进一步诊断评估的患者,并随访24个月。在液相色谱-串联质谱平台上进行靶向定量血浆代谢物分析。改良代谢(i-代谢)特征由12种分析物加糖类抗原(CA)19-9组成,简约代谢(m-代谢)特征由4种分析物加CA 19-9组成。该研究的主要终点是以85%的特异性和尽可能高的诊断准确性排除胰腺导管腺癌。所有统计分析均按照方案进行。本研究已在德国临床试验注册中心注册(DRKS00010866)。

结果

在2016年9月9日至2022年4月8日期间,筛查了1370例经CT发现有胰腺病变且需要进一步诊断评估的患者,其中1129例患者(489例胰腺导管腺癌患者,640例对照)纳入主要分析(中位年龄67岁[四分位间距58 - 75];556例[49%]为女性,572例[51%]为男性)。对照组包括患有急性胰腺炎的高危个体(1129名参与者中的11名[1%])、慢性胰腺炎患者(113名[10%])、导管内乳头状黏液性肿瘤患者(232名[21%])、非导管内乳头状黏液性肿瘤的囊性病变患者(271名[24%])以及胰腺外源性转移患者(13名[1%])。i-代谢特征检测胰腺导管腺癌的曲线下面积(AUC)为0·846(95%CI 0·842 - 0·849),特异性为90·4%(89·8 - 91·1),敏感性为67·5%(66·9 - 68·0),平衡准确性为80·5%(80·2 - 80·�),而单独使用CA 19-9时(AUC 0·799[0·797 - 0·802],p<0·0001;特异性79·1%[78·7 - 79·4];敏感性81·8%[81·5 - 82·0];平衡准确性80·6%[80·4 - 80·9])。m-代谢特征检测胰腺导管腺癌的AUC为0·846(95%CI 0·842 - 0·849;与单独使用CA ˙9相比p<0·0001),特异性为93·6%(93·1 - 94·0),敏感性为59·9%(59·3 - 60·4),准确性为79·0%(78·8 - 79·2)。在242例新发糖尿病患者(3例胰腺导管腺癌病例)中,m-代谢特征(不包括CA 19-9)能显著区分胰腺导管腺癌患者与非患者(p = 0·038)。在胰腺导管腺癌患病率为1%至20%的情况下进行随机自抽样后,AUC、特异性和敏感性保持不变。

解读

在一个前瞻性真实世界队列中,两种基于血浆的代谢特征在排除胰腺导管腺癌方面与单独使用CA 19-9相比,性能有显著改善。这些发现可为年胰腺导管腺癌风险为1%的患者提供一种监测工具,以减少不必要的侵入性检查,并有助于更早发现可切除疾病。

资助

德国联邦教育与研究部(BMBF)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验