Jankowski Wojciech J, Thompson Joshua J P, Monserrat Bartomeu, Slager Robert-Jan
TCM Group, Cavendish Laboratory, Department of Physics, Cambridge, UK.
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
Nat Commun. 2025 May 19;16(1):4661. doi: 10.1038/s41467-025-59257-5.
Excitons drive the optoelectronic properties of organic semiconductors which underpin devices including solar cells and light-emitting diodes. Here we show that excitons can exhibit topologically non-trivial states protected by inversion symmetry and identify a family of organic semiconductors realising the predicted excitonic topological phases. We also demonstrate that the topological phase can be controlled through experimentally realisable strains and chemical functionalisation of the material. Appealing to quantum Riemannian geometry, we predict that topologically non-trivial excitons have a lower bound on their centre-of-mass spatial spread, which can significantly exceed the size of a unit cell. Furthermore, we show that the dielectric environment allows control over the excitonic quantum geometry. The discovery of excitonic topology and excitonic Riemannian geometry in organic materials brings together two mature fields and suggests many new possibilities for a range of future optoelectronic applications.
激子驱动着有机半导体的光电特性,而这些特性是包括太阳能电池和发光二极管在内的器件的基础。在此,我们表明激子可以呈现出由空间反演对称性保护的拓扑非平庸态,并确定了一族实现预测的激子拓扑相的有机半导体。我们还证明了拓扑相可以通过实验上可实现的应变和材料的化学官能化来控制。借助量子黎曼几何,我们预测拓扑非平庸激子的质心空间扩展存在一个下限,这可能会显著超过一个晶胞的大小。此外,我们表明介电环境允许对激子量子几何进行控制。有机材料中激子拓扑和激子黎曼几何的发现将两个成熟的领域结合在一起,并为一系列未来的光电应用暗示了许多新的可能性。