文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

DNA replication timing reveals genome-wide features of transcription and fragility.

作者信息

Berkemeier Francisco, Cook Peter R, Boemo Michael A

机构信息

Department of Pathology, University of Cambridge, Cambridge, UK.

Department of Genetics, University of Cambridge, Cambridge, UK.

出版信息

Nat Commun. 2025 May 19;16(1):4658. doi: 10.1038/s41467-025-59991-w.


DOI:10.1038/s41467-025-59991-w
PMID:40389432
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12089344/
Abstract

DNA replication in humans requires precise regulation to ensure accurate genome duplication and maintain genome integrity. A key indicator of this regulation is replication timing, which reflects the interplay between origin firing and fork dynamics. We present a high-resolution (1-kilobase) mathematical model that infers firing rate distributions from Repli-seq timing data across multiple cell lines, enabling a genome-wide comparison between predicted and observed replication. Notably, regions where the model and data diverge often overlap fragile sites and long genes, highlighting the influence of genomic architecture on replication dynamics. Conversely, regions of strong concordance are associated with open chromatin and active promoters, where elevated firing rates facilitate timely fork progression and reduce replication stress. In this work, we provide a valuable framework for exploring the structural interplay between replication timing, transcription, and chromatin organisation, offering insights into the mechanisms underlying replication stress and its implications for genome stability and disease.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/1fe06b60860f/41467_2025_59991_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/275a0e8c98b0/41467_2025_59991_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/8903f11b9bab/41467_2025_59991_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/83331740f4e9/41467_2025_59991_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/7dbc3f85ff05/41467_2025_59991_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/5f076b468571/41467_2025_59991_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/1fe06b60860f/41467_2025_59991_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/275a0e8c98b0/41467_2025_59991_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/8903f11b9bab/41467_2025_59991_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/83331740f4e9/41467_2025_59991_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/7dbc3f85ff05/41467_2025_59991_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/5f076b468571/41467_2025_59991_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b4/12089344/1fe06b60860f/41467_2025_59991_Fig6_HTML.jpg

相似文献

[1]
DNA replication timing reveals genome-wide features of transcription and fragility.

Nat Commun. 2025-5-19

[2]
3D genome organization contributes to genome instability at fragile sites.

Nat Commun. 2020-7-17

[3]
Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide.

Nat Commun. 2019-12-13

[4]
A chromatin structure-based model accurately predicts DNA replication timing in human cells.

Mol Syst Biol. 2014-3-28

[5]
Genome-wide high-resolution mapping of mitotic DNA synthesis sites and common fragile sites by direct sequencing.

Cell Res. 2020-11

[6]
Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins.

Genome Res. 2013-7-16

[7]
Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing.

Genome Res. 2012-11-27

[8]
DNA replication and transcription programs respond to the same chromatin cues.

Genome Res. 2014-7

[9]
DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity.

Cell Rep. 2021-9-21

[10]
Genome-Wide Analysis of the Arabidopsis Replication Timing Program.

Plant Physiol. 2018-1-4

本文引用的文献

[1]
Replication fork stalling in late S-phase elicits nascent strand degradation by DNA mismatch repair.

Nucleic Acids Res. 2024-10-14

[2]
Strand-resolved mutagenicity of DNA damage and repair.

Nature. 2024-6

[3]
Linear interaction between replication and transcription shapes DNA break dynamics at recurrent DNA break Clusters.

Nat Commun. 2024-4-27

[4]
Neural network and kinetic modelling of human genome replication reveal replication origin locations and strengths.

PLoS Comput Biol. 2023-5

[5]
The evolution of the human DNA replication timing program.

Proc Natl Acad Sci U S A. 2023-3-7

[6]
GENCODE: reference annotation for the human and mouse genomes in 2023.

Nucleic Acids Res. 2023-1-6

[7]
Telomere-to-telomere human DNA replication timing profiles.

Sci Rep. 2022-6-10

[8]
High-throughput analysis of single human cells reveals the complex nature of DNA replication timing control.

Nat Commun. 2022-5-3

[9]
Replication Stress, Genomic Instability, and Replication Timing: A Complex Relationship.

Int J Mol Sci. 2021-4-30

[10]
Common Fragile Sites Are Characterized by Faulty Condensin Loading after Replication Stress.

Cell Rep. 2020-9-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索