Suppr超能文献

基于多模态超声和临床特征的乳腺癌分子亚型预测模型

Prediction models of breast cancer molecular subtypes based on multimodal ultrasound and clinical features.

作者信息

Li Hui, Zhang Chang-Tao, Shao Hua-Guo, Pan Lin, Li Zhongyun, Wang Min, Xu Shi-Hao

机构信息

New District of the First Affiliated Hospital of Wenzhou Medical University, Shang-cai Village, Nan-bai-xiang Street, Ou-hai District, Wenzhou City, 325000, Zhejiang Province, China.

School of advanced manufacturing/school of ocean, Fuzhou University, No.1 Shui-cheng Road, Jin-jing Town, Jin-jiang City, 362251, Fujian Province, China.

出版信息

BMC Cancer. 2025 May 19;25(1):886. doi: 10.1186/s12885-025-14233-6.

Abstract

BACKGROUND AND AIMS

Breast cancer classify into four molecular subtypes: Luminal A, Luminal B, HER2-overexpressing (HER2), and triple-negative (TNBC) based on immunohistochemical assessments. The multimodal ultrasound features correlate with biological biomarkers and molecular subtypes, facilitating personalized, precision-guided treatment strategies for patients. In this study, we aimed to explore the differences of multimodal ultrasound features generated from conventional ultrasound (CUS), shear wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) between molecular subtypes of breast cancer, investigate the value of prediction model of breast cancer molecular subtypes based on multimodal ultrasound and clinical features.

METHODS

Breast cancer patients who visited our hospital from January 2023 to June 2024 and underwent CUS, SWE and CEUS were selected, according to inclusion criteria. Based on the selected effective feature subset, binary prediction models of features of CUS, features of SWE, features of CEUS and full parameters were constructed separately for the four breast cancer subtypes Luminal A, Luminal B, HER2, and TNBC, respectively.

RESULTS

There were ten parameters that showed significant differences between molecular subtypes of breast cancer, including BI-RADS, palpable mass, aspect ratio, maximum diameter, calcification, heterogeneous echogenicity, irregular shape, standard deviation elastic modulus value of lesion, time of appearance, peak intensity. Full parameter models had highest area under the curve (AUC) values in every test set. In aggregate, judging from the values of accuracy, precision, recall, F1 score and AUC, models used features selected from full parameters showed better prediction results than those used features selected from CUS, SWE and CEUS alone (AUC: Luminal A, 0.81; Luminal B, 0.74; HER2, 0.89; TNBC, 0.78).

CONCLUSIONS

In conclusion, multimodal ultrasound features had differences between molecular subtypes of breast cancer and models based on multimodal ultrasound data facilitated the prediction of molecular subtypes.

摘要

背景与目的

基于免疫组织化学评估,乳腺癌可分为四种分子亚型:Luminal A型、Luminal B型、HER2过表达型(HER2)和三阴性型(TNBC)。多模态超声特征与生物标志物和分子亚型相关,有助于为患者制定个性化、精准导向的治疗策略。在本研究中,我们旨在探讨常规超声(CUS)、剪切波弹性成像(SWE)和超声造影(CEUS)产生的多模态超声特征在乳腺癌分子亚型之间的差异,研究基于多模态超声和临床特征的乳腺癌分子亚型预测模型的价值。

方法

根据纳入标准,选择2023年1月至2024年6月期间到我院就诊并接受CUS、SWE和CEUS检查的乳腺癌患者。基于所选的有效特征子集,分别为Luminal A型、Luminal B型、HER2型和TNBC型这四种乳腺癌亚型构建CUS特征、SWE特征、CEUS特征和全参数的二元预测模型。

结果

有10个参数在乳腺癌分子亚型之间存在显著差异,包括BI-RADS、可触及肿块、纵横比、最大直径、钙化、不均匀回声、不规则形状、病变的标准差弹性模量值、出现时间、峰值强度。全参数模型在每个测试集中的曲线下面积(AUC)值最高。总体而言,从准确率、精确率、召回率、F1分数和AUC值判断,使用从全参数中选择的特征的模型比仅使用从CUS、SWE和CEUS中选择的特征的模型显示出更好的预测结果(AUC:Luminal A型,0.81;Luminal B型,0.74;HER2型,0.89;TNBC型,0.78)。

结论

总之,多模态超声特征在乳腺癌分子亚型之间存在差异,基于多模态超声数据的模型有助于分子亚型的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ee/12087075/28410954468c/12885_2025_14233_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验