Swenson Hugo, Ittner Ella, Werner Lucas, Rönnerman Elisabeth Werner, Mateoiu Claudia, Kovács Anikó, Dahm-Kähler Pernilla, Saed Ghassan M, Nemes Szilárd, Karlsson Per, Parris Toshima Z, Helou Khalil
Department of Oncology, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.
Department of Clinical Pathology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
J Ovarian Res. 2025 May 19;18(1):103. doi: 10.1186/s13048-025-01676-5.
Epithelial ovarian cancer (EOC) is a deadly and heterogenous disease comprising five major histotypes: clear cell carcinoma (CCC), endometrioid carcinoma (EC), low- and high-grade serous carcinoma (LGSC, HGSC), and mucinous carcinoma (MC). Despite this heterogeneity, EOC is often treated as a homogenous disease, and reliable screening tests are lacking. Although progress has been made, there is a pressing need for biomarkers to refine patient stratification, guide treatment, and improve outcomes. Here, we elucidated the relationship between DNA methylation and gene expression patterns in EOC to identify histotype-specific biomarkers.
Differential DNA methylation and gene expression analyses were performed for 86 early-stage EOC samples after histopathological reclassification stratified by histotype. The correlation between DNA methylation and gene expression was examined, and histotype-specific biomarkers were identified. Hierarchical clustering and predictive machine learning modeling were employed to assess the performance of the histotype-specific biomarkers using four external cohorts.
EOC histotypes exhibited distinct epigenetic, transcriptional, and functional profiles, with candidate histotype-specific biomarkers such as CTSE and VCAN effectively distinguishing CCC, HGSC, and MC on the transcriptional level. Gene expression for the candidate biomarkers was found to be reproducible across external cohorts, with histotype-specific differences remaining homogenous.
This study identified promising histotype-specific biomarkers for EOC using integrative transcriptomic and epigenomic analysis. Furthermore, these findings indicate that additional stratification or potential reclassification of the EC histotype is warranted in future studies.
上皮性卵巢癌(EOC)是一种致命且异质性的疾病,包括五种主要组织学类型:透明细胞癌(CCC)、子宫内膜样癌(EC)、低级别和高级别浆液性癌(LGSC、HGSC)以及黏液性癌(MC)。尽管存在这种异质性,但EOC通常被当作一种同质性疾病来治疗,且缺乏可靠的筛查测试。尽管已取得进展,但迫切需要生物标志物来优化患者分层、指导治疗并改善预后。在此,我们阐明了EOC中DNA甲基化与基因表达模式之间的关系,以识别组织学类型特异性生物标志物。
对86例早期EOC样本进行组织病理学重新分类并按组织学类型分层后,进行差异DNA甲基化和基因表达分析。检测DNA甲基化与基因表达之间的相关性,并识别组织学类型特异性生物标志物。采用层次聚类和预测性机器学习建模,使用四个外部队列评估组织学类型特异性生物标志物的性能。
EOC的组织学类型表现出不同的表观遗传、转录和功能特征,CTSE和VCAN等候选组织学类型特异性生物标志物在转录水平上能有效区分CCC、HGSC和MC。发现候选生物标志物的基因表达在外部队列中具有可重复性,组织学类型特异性差异保持一致。
本研究通过整合转录组学和表观基因组学分析,为EOC识别出了有前景的组织学类型特异性生物标志物。此外,这些发现表明,在未来的研究中,EC组织学类型有必要进行进一步分层或潜在的重新分类。