Suppr超能文献

基于血液生物标志物的人工智能在卵巢上皮性癌术前诊断和预后预测中的应用。

Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers.

机构信息

Medical Sciences Innovation Hub Program, RIKEN, Yokohama, Kanagawa, Japan.

Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan.

出版信息

Clin Cancer Res. 2019 May 15;25(10):3006-3015. doi: 10.1158/1078-0432.CCR-18-3378. Epub 2019 Apr 11.

Abstract

PURPOSE

We aimed to develop an ovarian cancer-specific predictive framework for clinical stage, histotype, residual tumor burden, and prognosis using machine learning methods based on multiple biomarkers.

EXPERIMENTAL DESIGN

Overall, 334 patients with epithelial ovarian cancer (EOC) and 101 patients with benign ovarian tumors were randomly assigned to "training" and "test" cohorts. Seven supervised machine learning classifiers, including Gradient Boosting Machine (GBM), Support Vector Machine, Random Forest (RF), Conditional RF (CRF), Naïve Bayes, Neural Network, and Elastic Net, were used to derive diagnostic and prognostic information from 32 parameters commonly available from pretreatment peripheral blood tests and age.

RESULTS

Machine learning techniques were superior to conventional regression-based analyses in predicting multiple clinical parameters pertaining to EOC. Ensemble methods combining weak decision trees, such as GBM, RF, and CRF, showed the best performance in EOC prediction. The values for the highest accuracy and area under the ROC curve (AUC) for segregating EOC from benign ovarian tumors with RF were 92.4% and 0.968, respectively. The highest accuracy and AUC for predicting clinical stages with RF were 69.0% and 0.760, respectively. High-grade serous and mucinous histotypes of EOC could be preoperatively predicted with RF. An ordinal RF classifier could distinguish complete resection from others. Unsupervised clustering analysis identified subgroups among early-stage EOC patients with significantly worse survival.

CONCLUSIONS

Machine learning systems can provide critical diagnostic and prognostic prediction for patients with EOC before initial intervention, and the use of predictive algorithms may facilitate personalized treatment options through pretreatment stratification of patients.

摘要

目的

我们旨在使用基于多个生物标志物的机器学习方法,开发一种针对临床分期、组织类型、残余肿瘤负担和预后的卵巢癌特异性预测框架。

实验设计

总共,334 名上皮性卵巢癌(EOC)患者和 101 名良性卵巢肿瘤患者被随机分配到“训练”和“测试”队列中。使用七种有监督的机器学习分类器,包括梯度提升机(GBM)、支持向量机、随机森林(RF)、条件随机森林(CRF)、朴素贝叶斯、神经网络和弹性网,从 32 个参数中得出诊断和预后信息,这些参数通常可从预处理外周血检查和年龄中获得。

结果

机器学习技术在预测与 EOC 相关的多个临床参数方面优于传统的基于回归的分析。结合弱决策树的集成方法,如 GBM、RF 和 CRF,在 EOC 预测中表现出最佳性能。使用 RF 区分 EOC 与良性卵巢肿瘤的最高准确率和 ROC 曲线下面积(AUC)值分别为 92.4%和 0.968。使用 RF 预测临床分期的最高准确率和 AUC 分别为 69.0%和 0.760。EOC 的高级别浆液性和黏液性组织类型可以通过 RF 进行术前预测。RF 可以区分完全切除和其他切除。无监督聚类分析确定了早期 EOC 患者中具有明显较差生存的亚组。

结论

机器学习系统可以在初始干预之前为 EOC 患者提供关键的诊断和预后预测,并且使用预测算法可以通过预处理对患者进行分层,从而促进个性化的治疗选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验