Suppr超能文献

声学退化语音的词汇偏向效应的可塑性

Malleability of the Lexical Bias Effect for Acoustically Degraded Speech.

作者信息

Drouin Julia R, Putnam Laura N, Davis Charles P

机构信息

Division of Speech and Hearing Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Department of Communication Sciences and Disorders, California State University Fullerton, Fullerton, California, USA.

出版信息

Ear Hear. 2025;46(5):1282-1294. doi: 10.1097/AUD.0000000000001667. Epub 2025 May 20.

Abstract

OBJECTIVES

Lexical bias is a phenomenon wherein impoverished speech signals tend to be perceived in line with the word context in which they are heard. Previous research demonstrated that lexical bias may guide processing when the acoustic signal is degraded, as in the case of cochlear implant (CI) users. The goal of the present study was twofold: (1) replicate previous lab-based work demonstrating a lexical bias for acoustically degraded speech using online research methods, and (2) characterize the malleability of the lexical bias effect following a period of auditory training. We hypothesized that structured experience via auditory training would minimize reliance on lexical context during phonetic categorization for degraded speech, resulting in a reduced lexical bias.

DESIGN

In experiment 1, CI users and normal hearing (NH) listeners categorized along 2 /b/-/g/ continua (BAP-GAP; BACK-GACK). NH listeners heard each continuum in a clear and eight-channel noise-vocoded format, while CI users categorized for clear speech. In experiment 2, a separate group of NH listeners completed a same/different auditory discrimination training task with feedback and then completed phonetic categorization for eight-channel noise-vocoded /b/-/g/ continua.

RESULTS

In experiment 1, we observed a lexical bias effect in both CI users and NH listeners such that listeners more consistently categorized speech continua in line with the lexical context. In NH listeners, an enhanced lexical bias effect was observed for the eight-channel noise-vocoded speech condition, while both CI users and the clear speech condition showed a relatively weaker lexical bias. In experiment 2, structured training altered phonetic categorization and reliance on lexical context. Namely, the magnitude of the lexical bias effect decreased following a short period of auditory training relative to untrained listeners.

CONCLUSIONS

Findings from experiment 1 replicate and extend previous work, suggesting that web-based methods may provide alternative routes for testing phonetic categorization in NH and hearing-impaired listeners. Moreover, findings from experiment 2 suggest that lexical bias is not a static phenomenon; rather, experience via auditory training can dynamically alter reliance on lexical context for speech categorization. These findings extend theoretical models of speech processing in terms of how top-down information is weighted for listeners adapting to acoustically degraded speech. Finally, these findings hold clinical implications for tracking changes in phonetic categorization and reliance on lexical context throughout the CI adaptation process.

摘要

目的

词汇偏向是一种现象,即贫乏的语音信号往往会根据其所处的单词语境被感知。先前的研究表明,当声学信号退化时,如在人工耳蜗(CI)使用者的情况下,词汇偏向可能会引导加工过程。本研究的目标有两个:(1)使用在线研究方法复制先前基于实验室的工作,证明对声学退化语音存在词汇偏向;(2)描述经过一段时间的听觉训练后词汇偏向效应的可塑性。我们假设,通过听觉训练获得的结构化经验将减少在对退化语音进行语音分类时对词汇语境的依赖,从而导致词汇偏向降低。

设计

在实验1中,CI使用者和正常听力(NH)听众沿着两个 /b/-/g/ 连续统(BAP - GAP;BACK - GACK)进行分类。NH听众以清晰和八通道噪声编码格式听取每个连续统,而CI使用者对清晰语音进行分类。在实验2中,另一组NH听众完成了带有反馈的相同/不同听觉辨别训练任务,然后对八通道噪声编码的 /b/-/g/ 连续统进行语音分类。

结果

在实验1中,我们在CI使用者和NH听众中都观察到了词汇偏向效应,即听众更一致地根据词汇语境对语音连续统进行分类。在NH听众中,对于八通道噪声编码语音条件观察到增强的词汇偏向效应,而CI使用者和清晰语音条件都显示出相对较弱的词汇偏向。在实验2中,结构化训练改变了语音分类和对词汇语境的依赖。具体而言,相对于未训练的听众,经过短时间听觉训练后词汇偏向效应的大小降低。

结论

实验1的结果复制并扩展了先前的工作,表明基于网络的方法可能为测试NH和听力受损听众的语音分类提供替代途径。此外,实验2的结果表明词汇偏向不是一种静态现象;相反,通过听觉训练获得的经验可以动态改变在语音分类中对词汇语境的依赖。这些发现从自上而下的信息如何为适应声学退化语音的听众加权的角度扩展了语音加工的理论模型。最后,这些发现对于在整个CI适应过程中跟踪语音分类的变化以及对词汇语境的依赖具有临床意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验