Agudelo Jared, Bedoya Oscar, Muñoz-Velandia Oscar, Rodriguez Belalcazar Kevin David, Ruiz-Morales Alvaro
Department of Internal Medicine, Universidad Libre, Cali, Colombia.
Department of Systems Engineering and Computer Science, Universidad del Valle, Cali, Colombia.
Cardiol Res Pract. 2025 May 11;2025:2566839. doi: 10.1155/crp/2566839. eCollection 2025.
There is no information on the potential of machine learning (ML)-based techniques to improve cardiovascular risk estimation in the Colombian population. This article presents innovative models using five artificial intelligence techniques: neural networks, decision trees, support vector machines, random forests, and Gaussian Bayesian networks. The research is based on a cohort of 847 patients free of cardiovascular disease at baseline and followed for cardiovascular disease events over 10 years at the Central Military Hospital in Bogotá, Colombia. To enhance the robustness and reduce the risk of overfitting, model evaluation was conducted using a 5-fold cross-validation on the entire dataset. Discriminatory ability was evaluated with the area under a ROC curve (AUC-ROC) for each ML-based model and the Framingham model. Experimental results showed that the neural network technique had the best discriminative ability to predict cardiovascular events, with an AUC-ROC of 0.69 (CI 95% 0.622-0.759) for unbalanced data and 0.67 (CI 95% 0.601-0.754) for balanced data. Other ML techniques also showed good discriminatory ability with AUC-ROC values between 0.56 and 0.65, superior to that observed for the Framingham model (0.53; CI 95% 0.468-0.607). Our study supports the flexible ML approaches to cardiovascular risk prediction as a way forward for cardiovascular risk assessment in Colombia. Our data even suggest that risk prediction using these techniques could be even more discriminative than widely used risk-stimulation models such as Framingham, adapted to the Colombian population. However, new prospective studies need to validate our data before general implementation.
关于基于机器学习(ML)的技术在哥伦比亚人群中改善心血管风险评估的潜力,目前尚无相关信息。本文介绍了使用五种人工智能技术的创新模型:神经网络、决策树、支持向量机、随机森林和高斯贝叶斯网络。该研究基于哥伦比亚波哥大中央军事医院的847名基线时无心血管疾病的患者队列,并对其进行了为期10年的心血管疾病事件随访。为了增强稳健性并降低过拟合风险,在整个数据集上使用5折交叉验证进行模型评估。使用每个基于ML的模型和弗明汉模型的ROC曲线下面积(AUC-ROC)评估判别能力。实验结果表明,神经网络技术在预测心血管事件方面具有最佳的判别能力,不平衡数据的AUC-ROC为0.69(95%CI 0.622-0.759),平衡数据的AUC-ROC为0.67(95%CI 0.601-0.754)。其他ML技术也显示出良好的判别能力,AUC-ROC值在0.56至0.65之间,优于弗明汉模型(0.53;95%CI 0.468-0.607)。我们的研究支持将灵活的ML方法用于心血管风险预测,作为哥伦比亚心血管风险评估的前进方向。我们的数据甚至表明,使用这些技术进行风险预测可能比适用于哥伦比亚人群的广泛使用的风险刺激模型(如弗明汉模型)更具判别力。然而,在普遍实施之前,需要新的前瞻性研究来验证我们的数据。
Cardiol Res Pract. 2025-5-11
Clin Orthop Relat Res. 2020-7
JMIR Public Health Surveill. 2025-1-29
Basic Res Cardiol. 2023-3-20
Eur Heart J Qual Care Clin Outcomes. 2023-6-21
JACC Cardiovasc Imaging. 2021-3