文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用人工智能技术在哥伦比亚进行心血管风险评估

Cardiovascular Risk Estimation in Colombia Using Artificial Intelligence Techniques.

作者信息

Agudelo Jared, Bedoya Oscar, Muñoz-Velandia Oscar, Rodriguez Belalcazar Kevin David, Ruiz-Morales Alvaro

机构信息

Department of Internal Medicine, Universidad Libre, Cali, Colombia.

Department of Systems Engineering and Computer Science, Universidad del Valle, Cali, Colombia.

出版信息

Cardiol Res Pract. 2025 May 11;2025:2566839. doi: 10.1155/crp/2566839. eCollection 2025.


DOI:10.1155/crp/2566839
PMID:40391384
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12086036/
Abstract

There is no information on the potential of machine learning (ML)-based techniques to improve cardiovascular risk estimation in the Colombian population. This article presents innovative models using five artificial intelligence techniques: neural networks, decision trees, support vector machines, random forests, and Gaussian Bayesian networks. The research is based on a cohort of 847 patients free of cardiovascular disease at baseline and followed for cardiovascular disease events over 10 years at the Central Military Hospital in Bogotá, Colombia. To enhance the robustness and reduce the risk of overfitting, model evaluation was conducted using a 5-fold cross-validation on the entire dataset. Discriminatory ability was evaluated with the area under a ROC curve (AUC-ROC) for each ML-based model and the Framingham model. Experimental results showed that the neural network technique had the best discriminative ability to predict cardiovascular events, with an AUC-ROC of 0.69 (CI 95% 0.622-0.759) for unbalanced data and 0.67 (CI 95% 0.601-0.754) for balanced data. Other ML techniques also showed good discriminatory ability with AUC-ROC values between 0.56 and 0.65, superior to that observed for the Framingham model (0.53; CI 95% 0.468-0.607). Our study supports the flexible ML approaches to cardiovascular risk prediction as a way forward for cardiovascular risk assessment in Colombia. Our data even suggest that risk prediction using these techniques could be even more discriminative than widely used risk-stimulation models such as Framingham, adapted to the Colombian population. However, new prospective studies need to validate our data before general implementation.

摘要

关于基于机器学习(ML)的技术在哥伦比亚人群中改善心血管风险评估的潜力,目前尚无相关信息。本文介绍了使用五种人工智能技术的创新模型:神经网络、决策树、支持向量机、随机森林和高斯贝叶斯网络。该研究基于哥伦比亚波哥大中央军事医院的847名基线时无心血管疾病的患者队列,并对其进行了为期10年的心血管疾病事件随访。为了增强稳健性并降低过拟合风险,在整个数据集上使用5折交叉验证进行模型评估。使用每个基于ML的模型和弗明汉模型的ROC曲线下面积(AUC-ROC)评估判别能力。实验结果表明,神经网络技术在预测心血管事件方面具有最佳的判别能力,不平衡数据的AUC-ROC为0.69(95%CI 0.622-0.759),平衡数据的AUC-ROC为0.67(95%CI 0.601-0.754)。其他ML技术也显示出良好的判别能力,AUC-ROC值在0.56至0.65之间,优于弗明汉模型(0.53;95%CI 0.468-0.607)。我们的研究支持将灵活的ML方法用于心血管风险预测,作为哥伦比亚心血管风险评估的前进方向。我们的数据甚至表明,使用这些技术进行风险预测可能比适用于哥伦比亚人群的广泛使用的风险刺激模型(如弗明汉模型)更具判别力。然而,在普遍实施之前,需要新的前瞻性研究来验证我们的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/2b363423dc29/CRP2025-2566839.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/8202b6e9159d/CRP2025-2566839.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/ac035f9772cf/CRP2025-2566839.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/975b23203b3d/CRP2025-2566839.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/14e79987956e/CRP2025-2566839.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/7f6c2a500699/CRP2025-2566839.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/2b363423dc29/CRP2025-2566839.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/8202b6e9159d/CRP2025-2566839.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/ac035f9772cf/CRP2025-2566839.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/975b23203b3d/CRP2025-2566839.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/14e79987956e/CRP2025-2566839.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/7f6c2a500699/CRP2025-2566839.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/12086036/2b363423dc29/CRP2025-2566839.006.jpg

相似文献

[1]
Cardiovascular Risk Estimation in Colombia Using Artificial Intelligence Techniques.

Cardiol Res Pract. 2025-5-11

[2]
Prediction of patient admission and readmission in adults from a Colombian cohort with bipolar disorder using artificial intelligence.

Front Psychiatry. 2023-12-21

[3]
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?

Clin Orthop Relat Res. 2020-7

[4]
Machine learning-based predictive models for perioperative major adverse cardiovascular events in patients with stable coronary artery disease undergoing noncardiac surgery.

Comput Methods Programs Biomed. 2025-3

[5]
Establishment and validation of an interactive artificial intelligence platform to predict postoperative ambulatory status for patients with metastatic spinal disease: a multicenter analysis.

Int J Surg. 2024-5-1

[6]
An Explainable Artificial Intelligence Text Classifier for Suicidality Prediction in Youth Crisis Text Line Users: Development and Validation Study.

JMIR Public Health Surveill. 2025-1-29

[7]
Artificial Intelligence-Derived Risk Prediction: A Novel Risk Calculator Using Office and Ambulatory Blood Pressure.

Hypertension. 2025-1

[8]
Development and validation of a web-based artificial intelligence prediction model to assess massive intraoperative blood loss for metastatic spinal disease using machine learning techniques.

Spine J. 2024-1

[9]
Prediction of preterm birth in multiparous women using logistic regression and machine learning approaches.

Sci Rep. 2024-9-20

[10]
Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease).

J Biomed Inform. 2019-7-30

本文引用的文献

[1]
Development of machine learning-based models to predict 10-year risk of cardiovascular disease: a prospective cohort study.

Stroke Vasc Neurol. 2023-12-29

[2]
External validation of the ACC/AHA ASCVD risk score in a Colombian population cohort.

Sci Rep. 2023-4-15

[3]
A cardiologist's guide to machine learning in cardiovascular disease prognosis prediction.

Basic Res Cardiol. 2023-3-20

[4]
Machine-learning versus traditional approaches for atherosclerotic cardiovascular risk prognostication in primary prevention cohorts: a systematic review and meta-analysis.

Eur Heart J Qual Care Clin Outcomes. 2023-6-21

[5]
Derivation, internal validation, and recalibration of a cardiovascular risk score for Latin America and the Caribbean (Globorisk-LAC): A pooled analysis of cohort studies.

Lancet Reg Health Am. 2022-5

[6]
Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach.

Int J Epidemiol. 2022-6-13

[7]
SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe.

Eur Heart J. 2021-7-1

[8]
Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar.

BMJ. 2020-11-4

[9]
Machine Learning Adds to Clinical and CAC Assessments in Predicting 10-Year CHD and CVD Deaths.

JACC Cardiovasc Imaging. 2021-3

[10]
Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study.

Cardiovasc Res. 2020-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索