Suppr超能文献

相似文献

2
Noncoronary Measures Enhance the Predictive Value of Cardiac CT Above Traditional Risk Factors and CAC Score in the General Population.
JACC Cardiovasc Imaging. 2016 Oct;9(10):1177-1185. doi: 10.1016/j.jcmg.2015.12.024. Epub 2016 Jul 20.
4
Epicardial adipose tissue and coronary artery calcium predict incident myocardial infarction and death in HIV-infected patients.
J Cardiovasc Comput Tomogr. 2015 Nov-Dec;9(6):553-8. doi: 10.1016/j.jcct.2015.08.002. Epub 2015 Aug 15.
9
Prognostic Value of Coronary Artery Calcium in the PROMISE Study (Prospective Multicenter Imaging Study for Evaluation of Chest Pain).
Circulation. 2017 Nov 21;136(21):1993-2005. doi: 10.1161/CIRCULATIONAHA.117.030578. Epub 2017 Aug 28.

引用本文的文献

1
Prediction of cardiovascular risk using machine-learning methods. Sex-specific differences.
Front Cardiovasc Med. 2025 Jun 19;12:1579947. doi: 10.3389/fcvm.2025.1579947. eCollection 2025.
2
Automated detection of epicardial adipose tissue in cardiac CT using ensemble machine learning for improved diagnosis.
MethodsX. 2025 May 31;14:103410. doi: 10.1016/j.mex.2025.103410. eCollection 2025 Jun.
3
The Impact of Artificial Intelligence on Women's Cardiovascular Disease Care.
Curr Cardiol Rep. 2025 Jun 20;27(1):98. doi: 10.1007/s11886-025-02250-7.
4
Cardiovascular Risk Estimation in Colombia Using Artificial Intelligence Techniques.
Cardiol Res Pract. 2025 May 11;2025:2566839. doi: 10.1155/crp/2566839. eCollection 2025.
5
Consumer Health Informatics to Advance Precision Prevention.
Yearb Med Inform. 2024 Aug;33(1):149-157. doi: 10.1055/s-0044-1800735. Epub 2025 Apr 8.
6
Pericoronary adipose tissue: potential for pathological diagnosis and therapeutic applications.
Cardiovasc Interv Ther. 2025 Apr 5. doi: 10.1007/s12928-025-01126-5.
7
Epicardial Fat in Heart Failure and Preserved Ejection Fraction: Novel Insights and Future Perspectives.
Curr Heart Fail Rep. 2025 Mar 19;22(1):13. doi: 10.1007/s11897-025-00700-5.
8
Roles of perivascular adipose tissue in the pathogenesis of atherosclerosis - an update on recent findings.
Front Physiol. 2025 Jan 6;15:1522471. doi: 10.3389/fphys.2024.1522471. eCollection 2024.
9
Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis.
Nat Rev Cardiol. 2025 Jun;22(6):443-455. doi: 10.1038/s41569-024-01110-1. Epub 2025 Jan 2.
10
Cohort profile: AI-driven national Platform for CCTA for clinicaL and industriaL applicatiOns (APOLLO).
BMJ Open. 2024 Dec 2;14(12):e089047. doi: 10.1136/bmjopen-2024-089047.

本文引用的文献

1
Fully Automated CT Quantification of Epicardial Adipose Tissue by Deep Learning: A Multicenter Study.
Radiol Artif Intell. 2019 Nov 27;1(6):e190045. doi: 10.1148/ryai.2019190045.
2
Deep learning-based stenosis quantification from coronary CT Angiography.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10949. doi: 10.1117/12.2512168. Epub 2019 Mar 15.
3
Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review.
J Am Coll Cardiol. 2019 Mar 26;73(11):1317-1335. doi: 10.1016/j.jacc.2018.12.054.
4
Machine Learning Outperforms ACC / AHA CVD Risk Calculator in MESA.
J Am Heart Assoc. 2018 Nov 20;7(22):e009476. doi: 10.1161/JAHA.118.009476.
6
Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT.
IEEE Trans Med Imaging. 2018 Aug;37(8):1835-1846. doi: 10.1109/TMI.2018.2804799. Epub 2018 Feb 9.
7
Artificial Intelligence in Cardiology.
J Am Coll Cardiol. 2018 Jun 12;71(23):2668-2679. doi: 10.1016/j.jacc.2018.03.521.
9
Automatic Calcium Scoring in Low-Dose Chest CT Using Deep Neural Networks With Dilated Convolutions.
IEEE Trans Med Imaging. 2018 Feb;37(2):615-625. doi: 10.1109/TMI.2017.2769839.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验