Suppr超能文献

基于邻域偏心率拓扑指数的部分新冠病毒药物的定量构效关系建模:对比分析

QSPR modeling of some COVID-19 drugs using neighborhood eccentricity-based topological indices: A comparative analysis.

作者信息

Kara Yeliz, Özkan Yeşim Saǧlam, Ullah Asad, Hamed Yasser Salah, Belay Melaku Berhe

机构信息

Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey.

Department of Mathematical Sciences, Karakoram International University Gilgit-Baltistan, Gilgit, Pakistan.

出版信息

PLoS One. 2025 May 20;20(5):e0321359. doi: 10.1371/journal.pone.0321359. eCollection 2025.

Abstract

COVID-19, which emerged in 2019, is a disease caused by a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARSCoV-2), and has caused a worldwide epidemic. During and after this outbreak, it has been confirmed once again that finding a drug to prevent and end such diseases as soon as possible is an important issue. However, drug discovery and to determine a molecule's physical characteristics in a lab takes effort and time and is a costly process. Relevant information about molecules can be obtained by calculating topological indices, which are molecular descriptive numerical values corresponding to the physical properties of the chemical structure of a molecule. In this paper, we consider recently used drugs such as arbidol, chloroquine, hydroxy-chloroquine, lopinavir, remdesivir, ritonavir, thalidomide and theaflavin in treatment of COVID-19. This article examines neighborhood eccentricity-based topological descriptors that are used to analyze the structures of potential drugs against COVID-19. Eccentricity-based topological indices are advancing the field of chem-informatics and helping scientists better understand structure-activity correlations across a wide range of chemical compounds. The purpose is to identify structural components that have a significant impact on physico-chemical properties. In this context, the chemical structure and the corresponding molecular graph of the drugs under consideration are given in order to calculate the neighborhood eccentricity values. QSPR models are studied using linear and cubic regression analysis with topological indices for boiling point, enthalpy of vaporization, flash point, molar refraction, polar surface area, polarizability, molar volume and molecular weight properties of these drugs. Regression analysis is applied to find potential correlation between different drug characteristics such as bio-availability and efficacy. The results show that topological indices and applied regression models are useful in predicting significant characteristics of drugs used for the treatment of COVID-19. Additionally, a comparison of the known values and the calculated values from the regression models discussed is obtained.

摘要

2019年出现的新型冠状病毒肺炎(COVID-19)是由一种新型冠状病毒,即严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的疾病,并已在全球范围内流行。在此次疫情期间及之后,再次证实尽快找到预防和终结此类疾病的药物是一个重要问题。然而,药物研发以及在实验室中确定分子的物理特性既费力又耗时,且成本高昂。可以通过计算拓扑指数来获取有关分子的相关信息,拓扑指数是与分子化学结构的物理性质相对应的分子描述性数值。在本文中,我们考虑了最近用于治疗COVID-19的药物,如阿比多尔、氯喹、羟氯喹、洛匹那韦、瑞德西韦、利托那韦、沙利度胺和茶黄素。本文研究了基于邻域偏心率的拓扑描述符,用于分析针对COVID-19的潜在药物结构。基于偏心率的拓扑指数正在推动化学信息学领域的发展,并帮助科学家更好地理解各种化合物的构效关系。目的是识别对物理化学性质有重大影响的结构成分。在此背景下,给出了所考虑药物的化学结构和相应的分子图,以便计算邻域偏心率值。使用线性和三次回归分析以及拓扑指数对这些药物的沸点、汽化焓、闪点、摩尔折射、极性表面积、极化率、摩尔体积和分子量性质进行定量构效关系(QSPR)模型研究。应用回归分析来寻找不同药物特性(如生物利用度和疗效)之间的潜在相关性。结果表明,拓扑指数和应用的回归模型有助于预测用于治疗COVID-19的药物的显著特性。此外,还对讨论的回归模型的已知值和计算值进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512f/12091765/93d9e307e236/pone.0321359.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验