Suppr超能文献

通过拓扑指数和机器学习预测骨癌药物特性。

Predicting bone cancer drugs properties through topological indices and machine learning.

作者信息

Ahmed W Eltayeb, Hanif Muhammad Farhan, Alzahrani Ebraheem, Fiidow Osman Abubakar

机构信息

Department of Mathematics and Statistics, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.

Department of Mathematics and Statistics, The University of Lahore, Lahore Campus, Lahore, Pakistan.

出版信息

Sci Rep. 2025 Aug 24;15(1):31150. doi: 10.1038/s41598-025-16497-1.

Abstract

Chemical graph theory and topological indices are key tools in the study of molecular structures and their properties. This research explores anticancer drugs using neighborhood degree-based topological indices and compares their efficacy through regression and machine learning models. The QSPR approach is applied to 15 anticancer drugs by constructing neighborhood-based molecular graphs, and calculating their respective topological indices. Regression models like quadratic, cubic, and random forest are employed to predict response metrics including like boiling point, refractivity, and surface area of the drugs. Comparative studies indicate that quadratic models provide better predictive performance then their cubic counterparts in most scenarios. Random forest models also demonstrate satisfactory accuracy with smaller error bounds. The present findings highlight the usefulness of topological indices in chemoinformatics and their application in predicting drug response.

摘要

化学图论和拓扑指数是研究分子结构及其性质的关键工具。本研究利用基于邻域度的拓扑指数探索抗癌药物,并通过回归和机器学习模型比较它们的疗效。通过构建基于邻域的分子图并计算其各自的拓扑指数,将定量构效关系(QSPR)方法应用于15种抗癌药物。采用二次、三次和随机森林等回归模型来预测包括药物沸点、折射率和表面积等响应指标。比较研究表明,在大多数情况下,二次模型比三次模型具有更好的预测性能。随机森林模型也显示出令人满意的准确性,误差范围更小。目前的研究结果突出了拓扑指数在化学信息学中的有用性及其在预测药物反应中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eed/12375756/86afad5f101d/41598_2025_16497_Fig1_HTML.jpg

相似文献

1
Predicting bone cancer drugs properties through topological indices and machine learning.
Sci Rep. 2025 Aug 24;15(1):31150. doi: 10.1038/s41598-025-16497-1.
3
Exploring QSPR in breast cancer drugs via entire neighborhood indices and regression models.
Sci Rep. 2025 Jul 22;15(1):26683. doi: 10.1038/s41598-025-12179-0.
6
Evaluation of antiarrhythmia drug through QSPR modeling and multi criteria decision analysis.
Sci Rep. 2025 Aug 9;15(1):29216. doi: 10.1038/s41598-025-14892-2.
7
On degree-dependent topological study of line graph of some antiviral COVID-19 drugs.
Eur Phys J E Soft Matter. 2025 Jul 14;48(6-7):39. doi: 10.1140/epje/s10189-025-00503-5.
9
A graph-theoretical approach to characterizing anaesthetic agents using topological indices and QSPR models.
Comput Biol Chem. 2025 Dec;119:108544. doi: 10.1016/j.compbiolchem.2025.108544. Epub 2025 Jun 27.

本文引用的文献

2
QSPR modeling of some COVID-19 drugs using neighborhood eccentricity-based topological indices: A comparative analysis.
PLoS One. 2025 May 20;20(5):e0321359. doi: 10.1371/journal.pone.0321359. eCollection 2025.
4
Improved QSAR methods for predicting drug properties utilizing topological indices and machine learning models.
Eur Phys J E Soft Matter. 2025 May 9;48(4-5):25. doi: 10.1140/epje/s10189-025-00491-6.
5
Deep learning models in classifying primary bone tumors and bone infections based on radiographs.
NPJ Precis Oncol. 2025 Mar 13;9(1):72. doi: 10.1038/s41698-025-00855-3.
6
Innovative approaches in QSPR modelling using topological indices for the development of cancer treatments.
PLoS One. 2025 Feb 21;20(2):e0317507. doi: 10.1371/journal.pone.0317507. eCollection 2025.
7
On QSPR analysis of pulmonary cancer drugs using python-driven topological modeling.
Sci Rep. 2025 Feb 1;15(1):3965. doi: 10.1038/s41598-025-88419-0.
9
On QSPR analysis of glaucoma drugs using machine learning with XGBoost and regression models.
Comput Biol Med. 2025 Mar;187:109731. doi: 10.1016/j.compbiomed.2025.109731. Epub 2025 Jan 28.
10
A paradigmatic approach to the topological measure of babesiosis drugs and estimating physical properties via QSPR analysis.
Heliyon. 2025 Jan 3;11(1):e41615. doi: 10.1016/j.heliyon.2024.e41615. eCollection 2025 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验